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Final Report

Photomultiplier Tube Amplifier-Discriminator

1.0 INTRODUCTION

In accordance with the requirements of Contract No. 951585

the amplifier-discriminator system shown in Figure 1.0-1 was

’

designed, constructed and tested. This report describes the

results of that development program.

The amplifier receives signals from photomultiplier tubes
looking at Nal crystals and converts them into pulées suitable
for pulse-height analysis. Appropriate gain and pulse shaping
are provided by the amplifier for the observation of gamma rays
with energies in the 100 KeV to 10 MeV range.

A discriminator connected to the amplifier output provides
a pulse when the amplifier output.signal exceeds 1% of full
scale (10 V). 1In this way an accurate determination of count-
ing rates above this threshold can be made independently of
analyzer dead time. Also coincidence gating and other such

logic functions can be performed using this pulse.

2.0 AMPLIFIER DESIGN ANALYSIS

The amplifier described herein employs the dperationél-
amplifier configuration with pulse shaping performed by the
feedback elements. A heavy reliance on negative feedback pro-
duces a response nearly independent of‘temperature, amplitude
or counting rate. The results of a detailed analysis of the
expected performance of the amplifier is given in this section.
Actual measured values consistent with the theoretical behavior
are presented in Section 4.

1.0-1
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Transistors Ql and Q2 form a double-differential ampli-
-fier, while transistors Q3 and Q4 provide a bootstrapped, com-
plementary emitter-follower output stage. The grounded-base
stage Q5 reduces the Miller capacity of the second stage,
resulting in increased amplifier bandwidthand reduced pro-
blems with rate limiting. The transistor operating biases are
determined by external feedback via Rf2, which is also invol-
ved in the pulse-shaping and pulse-gain determination. The
double-differential configuration was chosen to achieve a
high degree of dc output-voltage stability. Because the oper-
ating currents of Q2a and Q2b are approximately equal, theif .
base voltages are also nearly identical, resulting in very
closely matched collector currents and voltages for Qla and
QZ2a. Because Qla and Q2a are a tightly matched pair and have
the same dc resistance connected to their bases, their base
currents and voltages are also nearly equal, providing a large
‘degree of temperature compensation of output voltage drifts.
In this way, subsequent circuits can be direct-coupled to the
amplifier output without markedly upsetting their bias stabil-
ity. Thus, the advantages of a direct-coupled system in reduc
ing baseline shifts caused by pulse-tail pile-up can be real-
ized in practice.

The pulse shape and gain are determined by the feedback
elements (Rfl, Lfl, Rf2 and Cf2). The placement of the pulse-

shaping networks in the feedback loop allows the amplifier dy- .

namic range to be larger than that which would result if pulse

shaping were performed after the amplifier output. As a result

power is not wasted in unnecessary standing voltages or currents,

and the entire amplifier standby power becomes only 15.7 mW.

2.0-2
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In order to provide a gain characteristic which is only
weakly dependent on temperature, output amplitude or counting
rate, all active elements should be enclosed within the nega-
tive feedback loop and their operating biases should be kept
nearly independent of output amplitude. Therefore, the output
emitter followér, which provides a low output impedance for
driving subsequent circuits, is enclosed in the feedback loop.
In addition its source resistor RA is bootstrapped via CA so
that the Component of current in Q2a used for driving resis-
tive loads is not output-amplitude dependent. In order to
reduce the variations in the component of'this current for
capacitive loads, transistors with low values of Cob and high
values of fT are used for Q3 and Q4. Otherwise the capacity
at the collector of Q2a could cause rate-limiting effects,
which produce either non-linearities or the need for a larger

standing current in Q2 and the concurrent power increase.

The complementary configuration provides a low output
impedance for both the positive and negative portions of the
output pulse. If the PNP transistor were not present, then
~capacitive loads could be driven negatively only by the stand-
ing current in Q3. This current would result in standby power,
mostly eliminated by the complementary emitter follower. The
1-Kilo-ohm resistors in the collectors of Q3 and Q4 both aid
in decoupling pulse currents from the power supply and also
protect the output stage in the event of a short circuit.

Because the amplifier is direct-coupled and its output rests at

-6 V, (chosen for convenience in the discriminator design), out-

put shorts to ground could draw damaging currents in the output
stage. However, the 1-K resistor limits this fault current to
12 mA by forcing Q4 to saturate. As a result power dissipa-
tion remains well within tolerable limits, and no damage is

‘done to the transistor. The complementary configuration is

2.0-3



also self—prétecting against excessive emitter-base voltages,
because the emitter-base junction of one transistor acts as
a diode clamp for the other. Similarly, the resistor-diode-
capacitor configuration at the input (RP,ADp,'Cp)'prbteCts
the input transistor from damage in the event that a high
voltage pulse from the photomultiplier supply is applied to
the input. Such pulses can arise if the phototube anode is
placed at a positive high-voltage potential and capacitively
coupled to the amplifier.

2.1 Pulse Shaping and Approximate Impulse Response Function

The correct choice of amplifier pulse shape is essentially
a compromise between pulse pile-up effects and independence of
the Nal séintillation—decay time constant. A detailed analy-
sis of the effects of pulse shaping on nuclear detection sys-
tems is given in Appendix B.

From this analysis, it becomes apparent that the optimum
system, from the standpoints of low pulse pile-up and low noise,
employé amplifiers with no ac couplings producing secondary
time constants. In the presence of secondary time constants,
at least two differentiating networks must be present to pre-
vent the coupling capacitors from accumulating a large average
charge producing baseline shifts. Because the Fabri-Tek pulse-
height analyzer contains several such secondary time conStants,>
double differentiation is chosen for this amplifier. No secon-
dary time constants are present in the amplifier so that use
with a direct-coupled analyzer is possible. Direct coupling to
the discriminator is provided, and protective components pre-
vent damage in the event that the output is short circuited.

The leading edge of the pulse is shaped by integrating

"networks so that the peak amplitude does not depend strongly on

the amplifier cut-off frequency. Also, smoothly rising pulses

requife less standing current, and thus less power, to prevent
2.1-1



rate limiting and the associated non-linearities. The re-

sulting pulse possesses a nearly symmetrical positive portion
with a peak at 1.4 us and a width above the base line of 3.2 us.
A negative portion following the positive portion has an equal

area, so that the total charge transmitted by the pulse is
zero.

A block diagram of the amplifier and the pulse-shaping
networks is shown in Figure 2.1-1. A capacitor (Cf3) in par-
allel with Rfl has been neglected in this figure. This capaci-
tor reduces the initial slope of the output pulse and increases
the peak amplitude by 8%. Its principal functions are the re-
duction of rate limiting and the prevention of the coupling of

fast signals to the amplifier through the stray capacity across
LF1.

If the voltage gain (MV) of the amplifier is infinitely
large, then the input voltage (Vl) of the amplifier is approxi-
mately zero, and the output voltage is related to the input
current by ‘

Vout . RfZ {1 i p%]' 2t : (2.1-1)
iS [1 + pr}z {l + p%}'z .

where P Laplace transform variable

~
i

shaping time constant

£f3°f1

2.1-2
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Critical damping has been assumed in the above formula. This
condition requires that

-

Ceq Req?
: f1 fl '
Lfl = ———;—-——‘ (2.1'28)
Cep' = Cgyp (2.1-2b)
Reot = Resp ' . (2.1-2¢)

Also, to obtain nearly symmetrical waveforms we have chosen

= f A f17f1
T = Lflcfl = ___;___ (2.1-3)

and
T = RfZCfZ (2.1-4)

If the duration of the input current pulse is short com-
pared to the shaping time constant, it can be approximated by

i o= Qs (Y) (2.1-5)

resulting in an output pulse given by

8 3 t -‘t/ t -Zt/
e L ] A R s

<
"

out

(2.1-6)
2.1-4



This waveform has a peak at t = 0.61 t with a peak value of

Q;%§§Q. For the values used in this amplifier,
fz -
Voeak 0.053 V/pC . (2.1-7a)
Tpeak = 1.0 us (2.1-7b)

The presence of Cf3 modifies these values to

\'f

boak 0.057 V/pC . (2.1-8a)

T eak 1.4 us (2.1-8b)

This pulse shaping is similar to the double-differentiated,
" single-integrated shaping described in Appendix B. An increase
in gain of 14% and a slightly more symmetrical pulse result
from the bridged -T feedback network compared to simple RC
feedback. Because of the similarity of these two shaping net-
works, the pulse pile-up theory developed in Appendix B will

be applied to this amplifier. Evaluating equation 2.2.2-26 of
Appendix B for this pulse shape and assuming that the pulse-
height aﬁalyzer busy time is lohg compared to 1, one obtains
for the average peak shift AV

AV
— = 3.5 (R1)? | , (2.1-9)
v .
where
R = average counting rate
V = average input pulse height

"2.1-5
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For R = 10% and T = 1.6 us, then

AV

— = 0.09% (2.1-10)
V .

Secondary ac—coﬁplings in the pulse-height analyzer may
increase the peak shift and may cause additional peak smear-
ing at high rates, particularly if the rates themselves are
variable. The use of a doubly-differentiated waveform reduces

this effect as much as possible without complicated circuitry.

2.2 Stability Against Oscillation

In order to produce an amplifier with a high inherent
gain stability,'a large amount of negative feedback for fre-
quencies centered about the corner frequency given by the re-
ciprocal of the shaping time constant is required. As a result,
the frequency of gain cross-over approaches 10 MHz, réquiring
careful analysis if the amplifier is not to oscillate. The
basic theory of feedback amplifiers, together with the poles
and zeros resulting from several active networks, is given in
Appendix A. 1In this section this theory will be applied to
the amplifier. ’

An equivalent circuit of the amplifier is given in Figure

2.2-1, using a voltage source for the input. This voltage source

is the Thevenin equivalent of the current source representing
the phototube anode, and its magnitude is given by

s £1 1 (2.2-1)

2.2-1
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For the purpose of this analysis the amplifier wiil be divided
into two halves at the grounded-base stage (Q5). The double-
differential amplifier will be represented by its transfer
admittance Y,» given by the ratio of the signal current at
the collector of Q5 to the signal voltage at the base of Qlb.
The emitter follower transforms this current signal into an
output voltage at the emitters of Q3 and Q4, and the ratio of
this voltage to the output current from the double-differential
amplifier will be called ZB.
The basic theory of feedback amplifier design is pre-
sented in Section 2 of Appendix A. The analysis given in Sec-
tion 2.3 (Appendix A) shows that the behavior of the feedback
factor in ‘the neighborhood of gain cross-over determines the
stability of the amplifier. [The frequency of gain cross-over
is that frequency for which the magnitude of the complex feed-
back factor is one. It is often convenient to refer to a gain
cross-over time (tc), defined as the reciprocal of the angular
gain cross-over frequency (mc).] For this amplifier the feed-

back factor is given by

Y, Z, Y
o A “B 'f2

Yer * Ye2 * Yina

(2.2-2)

where the gains and admittances are defined by Figure 2.2-1.

- The amplifier will be stable if the slope of the loga-
rithm of the feedback factor plotted as a function of the
logarithm of the angular frequency does not become less than
-2 for frequencies near the gain cross-over frequency. This
criterion implies that the number of poles must not exceed

the number of zeros by more than two in this frequency region.

2.2-3
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As further calculation will show, the major region of concern
lies for times from 1 ns to 100 ns and that the gain cross-
over time is of the order of 10 ns. Thus, poles and zeros
smaller than about 0.5 ns will be neglected in the ahalyéis,
while poles and zeros larger than 200 ns will be considered

Completely dominant compared to one. Thus,

fl

Y z (2.2-3)
f1 pr2
Pt .
Yfz = - (2.2-4)
f2
R., C
- _ Uf1 “f1 _
T T\l Ca T Rep Gy 7 10ws
(2.2-5)
M0 = ZRfZ/Rfl = 132 (2.2-6)
and the feedback factor becomes approximately
Y., 2Z : .

INA )
1 + +
PCeyr  (p1)?2

(Nofice that we have written the feedback factor as a
function of the Laplace operator, p, instead of as a function
of frequency, w. These two quantities are simply related by

P = Jjuw (2.2-8)

2.2-4



Because the time constants involved in this analysis are
easily represented by RC products, we prefer the time (or
Laplace) domain rather than the frequency representation. In
evaluating approximations, the quantity p will be considered
to have units of reciprocal time.)

For times for which

t << —— = 140 ns ' (2.2-9)
The feedback factor simplifies to

—YA ZB

. | (2.2-10)
1 + _INA

PCe,

We will first calculate the transfer impedance of the
emitter follower using Section 4.2 of Appendix A. The output
load admittance is almost purely capacitive, caused by the
interconnecting cable, because the input resistance of the

~ pulse-height analyzer is 100 K. Thus, we will approximate

Y, = pCp, - | (2.2-11)

where CLp will be allowed to vary between 63 and 263 pF.

The biasing of the output emitter follower is such that
Q3 conducts with Q4 barely cut-off, except dUring the negative-
going portions of the output pulse. For the remainder of this
analysis, we will neglect the resistive component of Ye4 and

include the emitter-transistion capacity of Q4 in Ye3. This

2.2-5
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approximation is equivalent to setting the transconductance

(ge4) of Q4 equal to zero, as results when its collector cur-
rent vanishes.

Because the emitter follower is bootstrapped, the vari-
able transformation described in Section 4. 2.1 of Appendix A
will be performed Thus

Ra
B:' = B (2.2-12)
3 3 BT + R
37e3 A
1
YL" = Y+ " (2.2-13)
B
The total load admittance, YL', is given by
Y,'! = Y + Y + p(C - C) + pCLZ
L L1 f2 P{tob C 1 + DR..C
PRL2%1L2
(2.2-14)
~ where
1 1 ,
1 = R ¥ R * PCeyq
L D1
' Coq = emitter-collector capacitance of Q
RL = emitter-follower load resistance
' RD1 = discriminator input resistance

2.2-6



If one defines

1 1 1
G, = — + — + — 4+ (2.2-15)
L1 R n r |
£2 B L
Ciy = Cgp - c¢ + Cpp * Cy (2.2-16)
1
GLZ = E“— ’ (2.2-17)
L2
then
: 2
vy = 6118L2*P(C 18y p*Cy 56y 1%C; 56 p)+P?Cp 416,
L

Gyp + PCp,
(2.2-18)

and the analysis given in Section 4.2.3 of Appendix A applies
directly. The transfer impedance, given by equation 4.2.3-2
(Appendix A), becomes

BL' R (1 + pr_2)(1 +'pry,)
g = S L Lz- (2.2-19)
1 + pA + p2B + p3C

where
1
Rip = .
L1
w3 - Ce3 Tez
T2 = Rpo Gy
€1 = Cob3 * Copa * Cops

2,2-7



A= 83" [C) Ry + (Coq+ Cp) 15]
*(Cpp * Cpp) Rpp + €y Ry
- ' - : ' N
B B3' Ry Cp (rgz * 1) * 83" 105 (Coz + C))

* 1, * G, R) + R C

(114 L2 R L1 L1 L2

C = Tg3 115 C(Coq + C))

Many of the quantities in the above formulas are fixed

and easily determined. The values of these fixed quantities

are given in Table 2.2-1. For the calculation of CeS’

the

alpha cut-off frequency of the 2N3227, including the emitter-

transition capacitance of Q4, was assumed to be about 500 MHz

at a collector current of 1 mA or higher and to be 200 MHz at

200 wA. Including 1 pF for the emitter transition capacitance

of Q4, we obtain a value for Ce3 of 6 pF for a collector cur-

rent of 200 pA, and above 1 mA, the alpha time constant, T

- was fixed-at 0.3 ns.

a3’

The remaining quantities depend on load, transistor type

and operating bias, or temperature. For example, if the out-

put signal exceeds 6 V, Q5a at the discriminator input
ates and RL1 becomes 4.9 K. Otherwise, RL1 approaches
maximum value of 9.4 K. Similarly, we will consider a

of T3z extending from 125 @ to near zero. The current

satur-
its
range

gain,

83, has a minimum value at room temperature of 100, which could

2.2-8



Table 2.2-1

Fixed Quantities in the Emitter-Follower Calculation

Quantity Value
sz 165 K
RA 15 K
RB 15 X
RL 30 K
RL2 150 @
CLl 12 pF
Cob3 3 pF
C0b4 1.5 pF
CobS 1.2 pF
C1 5.7 pF

2.2-9



decrease by a factor of two at low temperatures. This
parameter will be considered over a range extending from
50 to 200. The modified current gain, Bz', then ranges
from a minimum value of 35.2, produced when B is 50 and
T.3 is 125 @, to a maximum value of 200 at high collector
currents and high temperatures.

For all cases both RL2 and T g are small compared to

RLl’ and 83' is large compared to one. Furthermore, C can

L1
be neglected compared to 83' Cl, while T,3 is small compared

to C1 RLl' With these approximations,

C.. + C.. |
L1 L2
B5' Ry, c, + —__E;T_—__J (2.2-20)

-2
n

Because the minimum value of A exceeds 2 us, which is long
compared to the time of gain cross-over, we will neglect one

compared to pA and write for the transfer impedance

1+ pTaS)(l + pTLZ)

Z, = | (2.2-21)
pCIN3(1 + pTA)(l + pTB)
where
c e % B ¥
IN3 1 :
8
3
Gy * (€ + Crod(ryz + CyT3)
T + T =
At T c -
IN3
_ 120 (g3 * CpyTes)
TATB C
IN3
L2 77 T3 . 2.2-10



For currents in excess of about 3 mA, L becomes'sufficiently
small so that

‘83' ] 33 | _— _(2.2-22)
and
C.,(R; ,C; + . ,) + C, 1
e+ o, = k2071271 a3 L1%a3 (2.2-23)
A B C
IN3
T C, 1 :
Thty .a L2 1 a3 (2.2-24)
A'B c
IN3
where
T,3 = 0.3 ns

Several values of the above quantities are given in Table
2.2-2 for different values of Bz and CLZ‘ Because 7, and

Ty, are closely equal, and because T3 and Tg are small and
also nearly equal, the transfer impedance of the emitter fol-

lower at high currents is almost purely capacitive and is
given by

1

(2.2-25)
PCyNs

For the collector current at its minimum value of 200 yuA,

T 3 becomes 125 @, and By' ranges from 35.2 for B, = 50 to 75

- 2.2-11



Table 2.2-2

Emitter-Follower Values at High Collector Currents

Quantlty_ By = 50 Bg = 200
Cp, = 63 pF | C;, = 263 pF Cp = 63 pF Cpp, = 263 pF
Cins 7.2 pF 11.2 pF 6.1 pF 7.1 pF
. 0.3 ns 0.3 ns 0.3 ns 0.3 ns
P 9.45 ns 39.4 ns 9.45 ns 39.4 ns
Ta - 10.4 ns 27.2 ns 12.3 ns 43.1 ns
1p | 0.22 ns 0.22 ns 0.22 ns | 0.22 ns

(1 + pr )1 + pry,)

pCIN3(1 + pTA)(l + pTB)

2.2-12



for By = 200. For values of capacitance in picofarads and
for time constants measured in nanoseconds, then

2.32 CL2 + 17.6

Tyt oTg = ; | (2.2-26)
IN3 :
1.92 C
T, T = L2 (2.2-27)
A B C
IN3
where
= 0.75 ns

Ta3

Several values of the above quantities are given in Table
2.2-3. In this case 03 and Tg nearly cancel, but 12 and -
Tp are considerably further separated. Therefore, at low cur-

rents we will approximate YB by

(1 + pty,)
Y, = L2 (2.2-28)
pCIN3(1 + pTA)

We now turn to the calculation of the response function
of the double-differential amplifier (Ql,'QZ, QS). The basic
theory of such an amplifier is given in Section 5 of Appendix A.
From equation 5.2.1-6 (Appendix A), the voltage gain becomes

“8e18 :
M N el®e?l (2.2-29)
VA ge2Yc»
2 QY 'Y, 558
3 "2
2.2-13



Table

2.2-3

Emitter-Follower Values at Low Collector Currents

2.2-14

Quantity Bz = 50 By = 200
L2 = 63 pF CL2 = 263 pF CL2 = 63 pF L2 = 263 pF
CIN3 7.8 pF 13.2 pF 6.7 pF 9.2 pF
T3 0.75 ns 0.75 ns 0.75 ns 0.75 ns
T12 9.45 ns 39.4 ns 9.45 ns 39.4 ns
TA 20.2 ns 46.7 ns 23.3 ns 67.5 ns.
Th b.77 ns 0.82 ns 0;77 ns. 0.82 ns
. - 1+ prgg) (1 + prp,)
PCiyn3 (1 *+ Pt ) (1 + prg)



where the subscripts refer to the transistor numbers given in

Figure 1.0-1 and are different from those used in Appendix A.

Thus,
el = transconductance of Q1 (2.2-30a)
€., = transconductance of Qz' (2.2-30b)
YCl = collector-base admittance of Q1 (2.2-30c)
YC2 = collector-base admittance of Q2 (2.2-30d)
Yel = _base—emitter admittance of Q1 (2.2-30e)
Ye2 = base-emitter admittance of Q2 : (2.2-30f)
Y, = external load admittance on the (2.2-30g)
- base of Q2 and the collector of Q1
Y3 = external load admittance on the (2.2-30h)

collector of Q2

‘  The primed quantities are defined by

| , Yo' = Y, v Y o+ Y, ‘ (2.2-31a)
" = -

Y2 Y2 + YCl + YC2 + Ye2 (2.2-31b)

Yo=Yt Y, | (2.2-31c)

Because the impedance at the emitter of the grounded-base
stage Q. is negligibly small, and because the current gain of

QS is close to unity for all frequencies of interest, the trans-
fer admittance becomes

g4 g
s My, - el ~el (2.2-32)
Y, 5o 2y "

-
>
"
d
e
=
<
=
|
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For the remainder of this analysis, the resistive portion
of YC will be neglected compared to the capacitive portion

because we are interested in times short compared to rCCC (~10 wus).
Thus,

Yo, = pCy | (2.2-33)

YC2 = pCC2 | (2.2-34)

and YZ" becomes

2
yon o L PICRET * Cop'Rgt + CpRpl + pECyR,Co5 'Ry

Rg'[1 + pCyR,]

(2.2-35)
where
R . N3 B2 Tes
3 R, + B, r
3 2 2
1 -
Ce2 = Cep ? Cer * CCZ
T
_ a2
Cez N
Te2
The transfer admittance then becomes
-1 1 + pC,R
Y, - 2 2 (2.2-36)
Ry (1 + pt )@ + pry)
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where Té and T are the roots of the quadratic_in the numera-

2rgqT
tor of equation for Y," (2.2-35) and R, = —&L €2
~ Z A R

bTypical values of the parameters for the double-differ-
ential amplifier are given in Table 2.2-4. The values for the
emitter resistances are those at room temperature. Because
the emitter resistance is proportional to the absolute tempera-
ture, variations in L of +17% will exist over a 100°C tempera-
ture range. This variation has been neglécted as being small
compared to the current-gain changes. |

When's2 has its lowest value of 100, then the quantities
in equation 2.2-36 become

_RA = 11 @ (2.2-37)
1 = 807 ns

C

Ty = 12.8 ns

For 8, at its highest value of 400, then

RA = 3.5 @ / (2.2-38)
T. = 2.46 us
n .= ;3.2 ns

For the calculation of the stability against oscillation,

we will consider T. to be large compared to gain cross-over,

2.2-17
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Table 2.2-4

Parameters of the Double-Differential Amplifier

Quantity Value

8e1 2000 wmho
Teq 500 @

8e2 16,000 wmho
L) 62.5 @

R,  510 Q

B, 100 to 400
R3 ©61.9 K

C2 100 pF

T2 2.0 ns

CeZ 32 pF

CCl 0.8 pF

Cer 3.0 pF
CeZi 35.8 pF
RZCZ 51 ns

2.2-18
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so that
- (1 + pCZRz)

pRATC(l + pTD)

IR

(2.2-39)

In this case Y, is nearly independent of B, and becomes approxi-
mately

-(1 + p51ns)

YA = (2.2-40)
(p8.742-us) (1 + pl3ns)

The remaining problem is the calculation of .the input
impedance of the double-differential amplifier. From equation

5.2.1-11 of Appendix A, the input admittance becomes

Y
_ el _
_YINA = Y ¢+ . Yy Y | (2.2-41)
" where

gel

Yel = 8 * pcel
1
Ymi = Ye1 Myp = pCop My
Y = PCx
X

1+ prCx

The first stage voltage gain, MVl’ is given by

el (2.2-42)



If the alpha cut-off frequency of Q1 isvassumed to be
50 MHz at a collector current of 50 pA, then

Coy = 6.4 pF (2.2-43)

and for B, = 100,

n

320 ns (2.2-44)

Therefore,'gel/s1 will be neglected in the remainder of this
analysis, giving for the feedback factor

~Cgp Yp Zp

C
+ C 1 X 4 C
2 ¢ 1+ P,

c1My1

(2.2-45)

where

Expanding equation 2.2-42, one obtains

T 1 + pC,R '
- e’ 272 : _
Myp = - - (2.2-46)
A ( PTC)( pTD)
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For times short compared to T (~1 us), equation 2.2-40 can
be used for Y,, yielding

(1 + pSlns)

(2.2-47)

<
—
(1}

(p140ns) (1 + pl3ns)

Because of the small value of CCl (0.8 pF) compared to Cx(47 pF)
and sz(lo pF), MVl CCl is negligible compared to the other
capacitive components for all times shorter than about 0.5 us.
Even for long times, the maximum value of M CC1 is about 14 pF,

"V1
which is not particularly significant compared to Cx + Cfé +
C
—%l + CCl at 61 pF. As a result the term in MVl CCl will be
neglected in the remainder of this analysis.
‘Then
. -a Y, Zg (1 + pr))
= . (2.2-48)
1+ pety
where
- o
a = LR = 0.164
Ce2 * Car v 7+ C
C
1
Cry + C_, + —5
c = f2 cl - 2 = 0.23
el
CfZ * Ccl =t Cx
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Substituting the gains given by equations 2.2-28'and
2.2-39, one obtains for the feedback factor '

a(l + pty,)(1 + pr )(1 + pC,R,)) -
F = L2 x 22 (2.2-49)
pZRATCCIN3(1 + pTA) (1 + pTD) (1 + pCTX) ‘

The quantities in equation 2.2-49 are given in Table 2.2-5 for
the collector current of Q3 equal to 200 pA and in Table 2.2-6
for a value in excess of 3 mA. Also CLz is allowed to take on
its minimum value of 63 pF and a loaded value of 263 pF.

The time of gain cross-over for a 200 pA current is given
by '

R, 1. C T, T
t . . A 'c "IN3 'A D (2.2-50)

a T2 Ty CZRZ

Similarly for the higher current, the gain cross-over time
becomes

R, . C T, TC ! :
tc - WJ/ A 'c "IN 'A D (2.2-51)
aVTLz C2R2 .

In both cases the time of gain cross-over is well re-
moved from additional poles which might cause oscillation. Be-
cause the quantities in equation 2.2-49 are mostly fixed by
external components and only depend weakly (~ +25%) on transis-
tor parameters, we conclude that this amplifier is not likely
to oscillate during reasonable excursions of temperature or
transistor parameters.
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Table 2.2-5

Feedback Factor Parameters near Gain Cross-Over for Low Values

of the Collector Current of Q3

Quantity 83 = 50 63 = 200
CLZ = 63 pF CL2 = 263 pF L2 = 63 pF CL2 = 263 pF
a .164 0.164 0.164 0.164
19 45 ns 39.4 ns 9.45 ns 39.4 ns
Ty 24 ns 24 ns 24 ns 24 ns
CZRZ 51 ns 51 ns 51 ns 51 ns
RATC 8.74Q-us 8.74Q-us 8.74Q-us 8.74Q-us
CIN3 7.8 pF 13.2 pF 6.7 pF 9.2 pF
Ta 20.2 ns 46,7 ns' 23.3 ns 67.5 ns
2 13 ns 13 ns 13 ns 13 ns
CTy 5.5 ns 5.5 ns 5.5 ns 5.5 ns
tC 9.5 ns 8.9 ns 7.9 ns 5.7 ns
B . a(l + pr;,)(1 + pr )(1 + pCyR,)

2.

2-23

szArCCIN3(1 + pTA)(l + prD)(l + pcrx)
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Table 2.2-6

- Feedback Factor Parameters near Gain Cross-Over for High

Values of the Collector Current of Q3

= 200

Quantity = 50 B+
L2 = 63 DF L, = 263 pF = 63 pF [C;, = 263 pF

a 0.164 0.164 0.164 0.164
12 9.45 ns 39.4 ns 9.45 ns 39.4 ns
Tx 24 ns 24 ns 24 ns 24 ns

CZRZ 51 ns 51 ns 51 ns 51 ns

RATC 8.74Q-yus 8.74Q-us 8.74Q-us 8.74Q-us

Cins 7.2 pF 11.2 pF 6.1 pF 7.1 pF
T 10.4 ns 27.2 ns 12.3 ns 43.1 ns
T, 13 ns 13 ns 13 ns 13 ns

ct 5.5 ns 5.5 ns 5.5 ns 5.5 ns
tc 5.0 ns 4.9 ns 4.6 ns 3.8 ns

n

a(l + pry,)(1 + pr,)(1 + pCyR,)

szATCCINS(l + pTA)(l + pTD)(l + pCTx)
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2.3 Gain Drifts

Gain drifts can arise from three principal sources.
First, in direct-coupled systems variations of the amplifier
output dc level contribute to offset changes. Second, drifts
in the amplifier pulse géin cause variations in the slope of
the transfer characteristic. Third, non-linearities at high
levels caused by changing feedback factor or rate limiting
produce unstable deviations from an ideal and predictable
response.

2.3.1 DC Level Stability

The configuration of the feedback networks was
chosen so that the voltage gain of this amplifier would be
unity for ‘slowly varying signals. 1In this way the thermally
induced variations of the tracking of the emitter-base voltages
of Qla and Qlb are not amplified. In addition a very large
feedback factor is present for dc signals, resulting in a highly
predictable operating point. The 2N4044 is specified to have
a maximum mismatch of the emitter-base voltage tracking of
3 wV/°C, producing a 300 uV output voltage variation for a 100°C
temperature swing. The double-differential amplifier configur-
ation ensures a close match of the operating conditions of Qla
and Qlb, so that the good tracking inherent in these transistors
can be achieved in practice. |

A more serious contributor to output voltage drifts
arises from the base currents in the input stage. These currents
flow in the feedback resistor (Rf2) and in the resistor from the
base of Qla to the -6-V supply. If the two resistors were identi-
cal and if the two base currents were equal, then the amplifier
output voltage would be indépendent of the absolute value of
the current gain of the input stage. The 2N4044 is guaranteed
by the manufacturer to possess a beta match of 10% and should

be selected for a minimum gain of 300 at a collector current
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of 50 pA. Then, a 50% change in the matching would result
in a maximum output voltage shift of 1.24 mV. Such a change
is a conservative estimate of the effect of a 100°C tempera-
ture change on this transistor. It should be pointed out
that the 2N4044 contains two transistors deposited on the
same substrate and enclosed in the same can. Because both
transistors are manufactured at the same time in identical
diffusion environments and because they continue to be exposed
to the same environment and operating conditions throughout
their life, long term stability of this close matching can
be expected.

Because this amplifier has been designed with
similar techniques as those used in the construction of highly
stable power supplies, the output dc level drifts should be
conservatively less than 1.6 mV. Typically drifts of the order
of 0.5 mV can be expected over a 100°C temperature span, be-
cause the matching of the transistors usually well exceeds the

manufacturer's worst-case specification.




2.3.2 Pulse-Gain Stability

The principal contributors to thermally induced
gain drifts are the components in the feedback networks and
the amplifier feedback factor, '

The resistors and capacitors used in the feed-
back networks are the most stable that are commercially avail-
able without special order. (An improvement in stability by
over a factor of two is possible if specially selected parts
are purchased.) Metal film resistors with a temperature coeffi-
cient less than *25 ppM/°C (T9) are employed in gain-deter-
mining networks. The capacitors use a compensated ceramic
dielectric to provide a temperature coefficient which is also
less than #25 ppM/°C.

The inductor (Lfl) had to be specially constructed
in order to achieve high stability in a small size. The speci-
fications for this choke are given in Appendix C. FO? such an
indﬁctor, the inductance depends purely on the number of turns
and on the permeability of the iron core. Because the number
of turns is fixed, the principal contributor to thermal drifts
is the permeability of the core. ‘This core is constructed out
of stabilized permalloy powdered iron, which has a temperature
coefficient of permeability of less than *25 ppM/°C.

_ It is also necessary to keep the series resistance
of the choke small compared to 2.49 K because of the large tem-
perature coefficient of resistance of copper wire. Typically
this resistance is less than 2 ohms. Similarly, the self-reso-
nant frequency must be large compared to the 100 KHz correspon-
ding to the pulse-shaping time constant. The resonance of
this inductor at 2.4 MHz is sufficiently high for this appli-
cation.
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The total gain variations from the feedback com-
ponents thus becomes less than #50 ppM/°C. Typically some
compensation occurs, resulting in temperature coefficients in
the neighborhood of 25 ppM/°C or a gain drift of 0.25% for a
100°C temperature variation.

The remaining source of gain drifts arises from
the finite value of the amplifier feedback factor. Using the
analysis of the previous section and keeping only poles and
zeros which are significant compared to the shaping time con-
stant, one obtains for the feedback factor

(1 + pr)3
F = (2.3.2-1)

2
P CeiRe CrNsRAE + P )

. The gain correction produced'by the finite feedback factor' is -
given approximately by '

%? = - g le (2.3.2-2)
where G = gain for infinite feedback factor
AG = gain change caused byvé‘finite feed-
back factor :
TF(j/%)l =. magnitude of the feedback factor at an

angular frequency equal to the reciprocal
of the shaping time constant.

(In the above apprbximation, we have assumed that this pulse
amplifier is similar to a tuned amplifier with a center fre-
quency corresponding to the shaping time constant. This approxi-
mation has been justified in the past for similar pulse shap-
ing configurations after tedious numerical calculations. The
accuracy of the approximation is of the order of 30%.)
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‘ Substituting equation 2.3.2-1 into equation
2.3.2-2, one obtains

AG ) —23/2 12
— = (2.3.2-3)

T
C
G CeiRe2CrnsRa VT Ti

Several values for the gain shift are given in Table 2.3.2-1.
The "low beta" cases assume that both the gain of Q2 and of

Q3 are minimal together. Similarly the "high beta" cases are
for both gains at their maximum values. The difference of
these two 'cases then represents the difference between low and
high temperatures.

From this table several dependencies become_éppar-
ent. The maximum gain drift with temperature becomes 0.31% in
the case of 263 pF and low collector current. The effect of
changing the load capacity from 63 pF to 263 pF is an 0.2% gain
decrease at low temperatures and an 0.05% decrease at high

temperatures. These drifts, combined with those resulting from

variations of the feedback components, indicate that the worst-

case gain shift over a 100°C temperature range should be less
than 0.8%. Because of partial drift compensation, total gain
drifts over this range should typically be about 0.5%.

2.3.3 Llinearity

As the magnitude of the output bulse increases,
the operating currents within the amplifier change, resulting
in varying feedback factor and concurrent changes in the dif-
ferential gain. As a result the gain for large amplitude
pulses may be different than that for small amplitude pulses,

producing a non-linearity in the transfer characteristic.

2.3-5

£



L2

L2

63 pF

Table 2.3.2-1

Gain Changes (AG/G) Caused by a Finite

263 pF

Feedback Factor

2.3-6

Low Beta High Beta

By = 100 By, = 400

B3 = 50 B3 = 200

Iy =200 A |I; > 3 mA I; =200 uA| I, > 3 mA

-0.284% -0.262% -0.127% -0,115%
-0.480% -0.408% -0.174% -0.134%

AG -1

G . |F(/0)|



One contributor to such non-linearities is the
dependence of the collector current of Q3 on output amplitude.
If the output pulse rises at a rate of 10 V in 0.8 ps (maxi-
mum slope for an output pulse of maximum amplitude), the cur-

rent supplied by Q3 into a capacitive load of 263 pF becomes

263 pF x 10 V
iy = = 3.3 mA (2.3.3-1)
0.8 us

From Table 2.3.2-1 the gain correction %gvat low temperatures
changes from -0.48% for small currents to -0.408% for currents
of the above order of magnitude. As a result an 0.072% dif-
ferential non-linearity will result from this effect. For

higher temperatures or lower capacitances this effect is re-
duced.

Another contributor to such non-linearities-arises
from the current required to swing the base of Q3 for large
output amplitudes.v The resistive component of this current is
| reduced by bootstrapping Ry- However, the current required
to charge the capacitance at this base (CINS) must be supplied
from the second stage. The maximum value of this current
becomes |

10 V .
iz = 13.2 pF ——— = 165 pA (2.3.3-2)
C
0.8 us

If one includes about 135 pA for the base drive of Q3, 300 uA
of current swing must be available from Q2. Because 400 pA is
conducting through Q2b in the quiescent state, the 300 pA can
be safely supplied by the second stage.

This current unbalance results in a changevin the

feedback factor, which is inversely proportional to the sum of
' 2.3-7 '
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the emitter resistances of Q2a and Q2b. This sum goes from

a value of 125 @ at balance to a value of 290 Q at maximum
unbalance. The worst-case non-linearity caused by this de-
crease in feedback factor becomes 0.66% when the load capacity
is 263 pF and the current gains 'are low. Typically differential
non-linearities of the order of 0.3% to 0.4% should be expected
for less extreme values of beta and load capacity.



3.0 DISCRIMINATOR DESIGN ANALYSIS

The postamplifier is direct-coupled to a discriminator,
which i1s a biased one-shot with a stable threshold. With no
input signal, the amplifier rests at -6 V, and the base of
Q5a is biased 0.1 V more negatively than the base of Q5b. Q6
is then cut off, and Q7 holds the output near +6 V. When the
positive output from the amplifier is large enough to over-
come the 0.1-V bias, Q5a starts to conduct, eventually caus-
ing Q6 to conduct also. Positive feedback then produces re-
generation through Cl such that Q6 saturates, placing the
output near ground. After the charge on Cl1 decays, the cir-

cuit returns to its quiescent state with Cl being rapidly re-

covered by the diode D1. The proper pulse width can be obtained

by using a suitable value for Cl.

With the exception of the timing capacitor (Cl), this
circuit is also completely dc coupled to avoid baseline shifts
and unnecessary'dead times at high counting rates. The power
required by this circuit is 4.9 mW, -

3.1 Threshold Stability

- The stability of the discriminator threshold depends on
the gain and voltage matching of Q5a and Q5b. Readily avail-
able matched, diffe}ential-amplifiér.transistor pairs provide
a total drift of about 0.5 mV for temperatures between -50°C
and +50°C. Variations of the resistors in the bias network for.
the base of QS5b add to the threshold drifts. If matched metal-
film resistors are used, drifts from this cause will be about

0.2% over a 100°C temperature span.

A further error results from the fact that the voltage
at the base of Q6 must'swing by about 0.4 V, while the collec-
tor must swing about 0.5 V, in order for the output voltage to
start moving negatively. These voltage swings require that
'3.0-1




about 5 pC be delivered to the 3 pF collector-base capacitance
and to the 3 pF emitter-transition capacitance of Q6. The

effect of this charge on the threshold can be calculated as
follows: ' '

The current flowing into the capacitance at the base of
Q6 can be written as

c 0 c2 1 < 1 (3.1-1)
iC = 0 icz > I0
where
icZ = current flowing into the collector of Q5b
I0 = bias current in R4

For input voltages (V) near the threshold voltage (VT) on the
base of Q5b, the collector current becomes

= I -i(V-VT)

c2 o 2re , (3.1-2)

i
where ry is the emitter resistance of Q5, given By g%;; and it
has been assumed that the amplifier is biased such th8t the
collector current for V = VT is equal to the current in R4.
Thus, the current into the capacitance becomes

(V - VT)

¢ 2r
e

e
it
o
<
A
<
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When the input pulse is barely large enough to trigger
the discriminator, the peak input voltage (Vp) should nearly
equal the threshold voltage, if the discriminator is to have
a stable and passively determined threshold. Therefore, one
is led to use a simplified form for V(t) produced by expand-
ing it in a power series to second order about the peak. From
equation 3.2-39 of Appendix B, V(t) is given approximately
by

4t
t'(2-t') et

v(t) = -6 (3.1-4)
' 0.231 x 2
- where
t' = t/1
Vp = peak Valué of the input signal pulse above -6 V

~and the single-integrated, double-differentiated waveform has
been used as an approximation to equation 2.1-6. (Note that
both the amplifier and the discriminator are referenced to
the -6-V supply.)

The power series expansion yields

V(t) =z V 1 - 1.7 (¢t ' - t")2 -6  (3.1-5)
P p
Where
t 't = time at which V(t) passes through
P . its first maximum
t.' = 0.586
P
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and the capacitor—charging current becomes

AV
i (t) = 1 - X2 x| <1 (3.1-6)
c
2r
e
1C(t) = 0 | x| f 1
where
AV = amount by which the peak input voltage
exceeds the threshold voltage = Vp - Vg -6
1.7 V t -t )2
X2 = P ( P)

INEE

The charge supplied to the capacitor QC then becomes

x=+1 'Z(AV)S/Z .
Q. = i (t) dt = s (3.1-7)
¢ ¢ 3r 1. 7Vp’ |

x=-1

For Vp nearly equal to the dlfference of V

relative threshold shift %K is given by

T from -6 V» the

AV o . :
¢ 1.56 (re QC) | (3.1-8)



For our proposed design

VT—6 = 0.1V ' (3.1-9a)
and
AV '
= 5% (3.1-9b)
VT-6

Over a 100°C temperature range changes in re~and changes
in Q. resulting from thermal variations in the emitter-base
voltage of Q6 will cause a 32% variation in the above cor-
rection, resulting in a threshold drift of 1.6%. This drift
is partially compensated by two effects. First, the diodes
in the collector circuit of Q5b keep the voltage swing at the
base of Q6 relatively constant as a function of temperature.
Second, the fraction of the standing current in R6 which is
flowing in R4 at triggering varies with temperature because of
a small dependence on the forward voltage drops of Q5 and Q6.
This latter effect compensates for the charge variations caused
by the changing of the collector voltage swing of Q6 required
for triggering. The total drift from these effects is of the
order of 0.8 mV over a 100°C temperature range.

The total rms thermal drift of the discriminator thresh-
old level, including variations in the postamplifier dc out-
put voltage,'is then estimated to be 1.6 mV gf'1.6% for tem-
peratures between -50°C and +50°C. The maximum, worst-case
drift becomes 3.2 mV or 3.2%. The drifts are given in Table
3.1-1.
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Table 3.1-1

Célculated Drifts in Discriminator Threshold

Cause ' Magnitude
Eﬁitter-base voltage | 0.5 mV
and current gain of Q5
Resistor drifts 0.2 mV
Charge on the base of Q6, diodes 0.8 mV

in the collector of Q5b, and
emitter-base diode drifts of Q5

and Q6

Base current of Q1 1.2vmV
Emitter-base voltage of Q1 " 0.3 mV
Total rms drift ‘ 1.6 mV
Fraction of 100 mV threshold ‘ , 1.6%
Maximum drift 3.2 mV
Maximum fraction of 100 mV ‘ 3.2%
threshold '
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3.2 Pulse Width and Recovery Time

The discriminator output pulse width is determined'by
the output voltage, the bias level, and the decay time of Cl.
When the discriminator is triggered, the Voltége on the base -
of Q5b with respect to the base of Q5a is given by

-t
v, = v, ety (3.2-1)
where
V2 = voltage on the base of Q5b
Vo, = amplitude of the output voltage swing .
= time from triggering
T RgG

If the input pulse has returned to zero by the time that the
voltage across Cl has decayed sufficiently for the circuit to
return to its quiescent state, then the pulse width (Tw) is
given by '

VO
T, P P - (3.2-2)

Vr
For the discriminator proposed here, Te is 600 ns and T, be-
comes 2.4 us.

When the discriminator returns to its quiescent state,
the capacitor Cl discharges through D1, leaving the base voltage
of Q5b initially near -5.8 V. (A hot-carrier diode is used for
D1 because of its low forward-voltage drop ahd fast recovery
time.) This shifted threshold voltage then decays toward the
nominal -6.0-V level with a 600-ns time constant. After 1.4 us,
this error in the threshold will have decayed to about 20 mV.
The discriminator will then be ready to trigger on another input
pulse exceeding the threshold by a factor of 1.2.

' 3.2-1
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4.0 TESTING

Extensive tests were performed on the amplifier-dis-
criminator system to verify proper operation of the circuits.
The procedure used in performing these tests is described

in Section 4.1, while the actual test results are presented
in Section 4.2.

4.1 Test Procedures

The basic test configuration is illustrated by Figure
4.1-1. Precise voltage pulses are generated by a mercury-
relay pulser, such as the RIDL Model 47-7. This pulser was
used with an external power supply and a precision resistive
divider, so that a reference voltage more accurately known
than that internal to the pulser could be generated.

The voltage pulses were converted to current pulses by
a resistor-capacitor combination at the amplifier inpﬁt. Be-
cause the amplifier input appeared as a virtual ground, the
input curfent through the 30 pF capacitor had an exponentially
decaying waveform with a 300 ns time constant, and the total
charge was determined by the pulser reference voltage and by
the coupling capacitor to the amplifier. This current pulse

simulated the Nal - . photomultiplier system output signal.

For temperature tests, the amplifier-discrimindtor system
was placed in a temperature-controlled oven. The pulser, its
coupling network, the power supplies and the performance monitor-

ing equipment were outside the oven to avoid unnecessary mea-
surement errors.

For the amplifier gain tests the output pulse was observed
on a Tektronix 545B oscilloscope with a Type W plug-in unit.
| 4.0-1 |
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This plug-in unit allows accurate pulse amplitude measurements,
which are independent of oscilloscope gain. A stable, adjusta-
ble dc voltage is generated in theiplug—in unit and subtracted
from the input signal. By adjusting this voltage such that

- the pulse peak just reaches the baseline on the oscilloscope
viewing screen, the pulse amplitude becomes equal to the easily
measured dc Voltage; The amplifier output pulses can also be
measured using a stable, precision pulse-height analyzer if
such an instrument is available.

The amplifier output dc level could be monitored by connec-
ting a digital voltmeter to the output. For this measurement
no input signals should be aﬁplied to the amplifier, and the
value of the -6-V supply should be monitored because it is
used as the reference for the amplifier. Sihilarly, the ampli-
fier noise level can be determined by connecting a wideband
rms voltmeter to the amplifier output. A suitable instrument
is the Hewlett-Packard Model 3400 A. | :

The discriminator threshold was monitored by connecting
the discriminator output pulse to a scaler connected as a fre-
quency meter. The mercury-relay pulser was synChronized to
the ac power line so that it ran at a stable rafe of 120 pulses
per second. The pulser power supply was then adjusted so that
the frequency meter indicated 60 +5 Hz over several one-second
averaging intervals. The value of the. pulser power supply was
then taken as being proportional to the discriminator thresh-
old. This technique allows the center of the signai—plus-noise
Gaussian amplitude distribution to be placed accurately at the
discriminator threshold. A

4,1-2
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4.2 Test Results

The results of several tests performed at room tempera-
ture (—~20°C) are given in Table 4.,2-1. From these data it
is apparent that the gain and discriminator threshold desirea
have been achieved. Also, the dc output level equals the -6-V
reference within 4 mV, and the rms amplifier noise of 300 uV

is small compared to the analyzer channel width of 39 mV.

The effects of temperature variations are illustrated in
Figures 4.2-1, 4.2-2 and 4.2-3. For temperatures between -50°C
and +50°C, the amplifier baseline drifts by 0.5 mV and the gain
changes by 0.4%. Over the same temperature fange, the discrim-
inator threshold drifts by 0.75%, including amplifier drifts,
and by 0.32%, excluding amplifier drifts.

Because of the extensive theoretical analysis which pre-
ceded the construction of actual hardware, the behavior of the
circuits during test could be generally predicted in advance.
The agreement of the test data with the theoretical predictions
within the accuracies of measurement and calculation generates
confidence that the worst-case estimates for gain drift, lin-
earity, etc. are correct and actually do correspond to the
operation of actual hardware.

4.2-1
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Table 4.2-1

Results of Room Temperature Tests

| Parameter Value
Conversion gain ' . 0.0515 V/pC
Conversion capacitance 19.4 pF
Deviation of. output dc level -3.7 mV
from the value of the -6-V
supply
Discriminator threshold refer- -~ 1.98 pC

red to the amplifier input

Discriminator threshold refer- 102 mV
red to the amplifier output

RMS amplifier output noise 300 pVv
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1.0 INTRODUCTION

If a high degree of gain stability is reqdired in a
linear amplifier, feedback is generally employed.  The analy-
sis of such a fedback amplifier can become complicated if a
thorough understanding of gain drifts, transient response and
oscillations is needed. Although many texts thoroughly
develop feedback theory, a concise exposition of its applica-
tion to practical design does not seem to be available.
Therefore, these notes have been compiled to provide a gen-
eral summary of the principals of linear circuit design and
a ready reference of solved problems.

Basic knowledge of linear differential equations and trans-
form methods of solution are assumed, together with the usual
techniques of circuit analysis. The reader not familiar with

these items is referred to such texts as Thomason, Linear Feed-.

back Analysis. The purpose of these notes is to generate simpli-

fied expressions useful in performing practical design, rather
than providing a rigorous mathematical treatise on a subject

already overworked. The details of the analysis are included
to aid in finding errors and also to make possible generaliza-

tion to cases where stated approximations are no longer valid.

2.0 BASIC FEEDBACK THEORY

The usual feedback system is illustrated in the sketch
below.

out

b
b




For such a-system, the output is related to the input by:

_ _ 1 F '
v A T % [ 1-F ] (2.0-1)
where F = feedback factor = AB

Generally the feedback attenuation network (B8) depends only

on passive elements with all active parameters lumped into the
amplifier (A). By differentiating the closed-loop gain'(AcL)

with respect to A, one can find the dependence  this gain on

active elements, that is:

dA i \ .
clLl & dA -1
x (A} [ 2.0-2
( ACL) ( A ) ( F ) : ( )

for F >> 1

From this, one sees that changes in open loop gain (dA/A) are
attenuated by.the feedback factor. Because the open loop gain
typically drifts from age, temperature, or other causes by 100%,
the accuracy of the closed loop gain of an amplifier is of the
order of the reciprocal of the feedback factor. This result is
one of the primary motivations for the use of negative feedback.

Not all feedback is negative. Positive feedback is use-
ful for regenerative circuits such as discriminators or flip-
flops. Also, using positive feedback are oscillators (sine-wave
or otherwise) and various waveform generators. Most such cir-
cuits are characterized by the fact that any input signal from
noise or otherwise produces a divergent response limited by

amplifier non-linearities.
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2.1 The Difference Between an Amplifier and an Oscillator

A vexing problem in feedback circuit design is the pro-
duction of an oscillator when an amplifier is desired or vice-
versa. The difference between these two types of circuits
depends on the closed-loop transfer function. Using Laplace
transforms with "p'" as the transform variable, the time depen-
dence of the output voltage to an input stimulus can be expres-
sed as

Voue () = A (P) Vg (P) | (2.1-1)

[ v(t) e Pt gt
0

For circuits containing only resistors, capacitors and induc-

where V(p)

tors or active elements which can be equivalently expressed in
terms of the above, the closed loop transfer function becomes

the ratio of two polynomials of finite order with real coeffi-
cients, that is:

N
}:. i
a;p-

i=0
M

J
D b;p
§=0

Such a polynomial will have as many roots (ak, Bk)'as its order,
where the roots are defined by

A (P) =

- —%%g%— | (2.1-2)

- 0 (2.1-3a)

= 0 (2.1-3b)

E: i®k

i=0

M .
]

2: b; 8 i

3=0 2.1-1




Because ACL (ak) = 0, the @, are called the "zeros" of the
closed loop transfer function; similarly because ACL (Bk) = o,
the 8, are the poles. '

The poles and zeros can be either positive, negative,
or complex conjugates. Considering a delta-function source
function so that Vs(p) = 1, then the transform of the output
voltage equals the closed-loop transfer function. The place-
ment of the poles of this transfer function then determines
the basic type of response of the circuit.

The denominator of the transfer function can be written
as follows:

M

o) = T o e-g (2.1-4)
k=0

explicitly denoting the fact that D(Bk) = 0., The inverse trans-
form then assumes the form:

M

Vo (1) = Z d;  exp (8 t) (2.1-5)
k=0 -

where the dk can be polynomials in t if equal poles are present.
From this expression, five types of response are possible:

1. Decaying exponential - Bx negative

2. Decaying sinusoid - By complex with negative
real part

3. Divergent exponential - B, positive
4. Divergent sinusoid - B, complex with positive real part

5. Steady sinusoid - By pure imaginary
2.1-2




Oscillators and regenerative circuits make use of cases 3 to

5 where the poles lie in the right half of the p-plaﬁe,includ—
ing the imaginary axis. Cases 1 and 2 correspond to stable
amplifiers with the poles lying in the left half plane. (Case

2 with large complex parts of By is usually not very desirable.)

2;2 Conditions for Oscillation

Although the conditions on the closed-loop transfer func-
tion separating amplifiers and oscillators appear sfraight—
forward, the practical Broblems of analyzing this function
directly may be insuperable. Because the feedback factor (F)
may be far easier to calculate, many attempts have been made to

determine circuit response by examining the characteristics of F.

If the restriction to cases of resistors, capacitors and
inductors or to active elements representable by the above is
continued, then the feedback factor is also the quotienf of two
polynomials of finite order and real coefficients. The place-
ment of the poles and zeros of this function can now be used to
deduce the stability of the closedlloop system.

A divergent response or steady oscillation occurs only if
the closed-loop transfer function (AcL) has poles in the right
half of the p-plane, including the imaginary axis. If the open
loop gain (A) and the feedback network (8) result from stable
systems, then they can have no poles in the right half plane.
From equation 2.0-1, one then deduces that the dnly term possibly
contributing to poles of ACL in the right half plane is T%F'
Thus, the only poles of A.p in the right half plane result from
zeros of 1-F, which can have no poles in the right lm1f plane
because F has no poles there.

2.2-1



The feedback factor F as a function of the complex variable
p can be viewed as a mapping of contours in the complex p-plane
into contours in the complex F-plane. If F results from practi-
cal circuits employing at least one active element, it will tend
to vanish at very large frequencies, so that

(z.2-1)

A fundamental theorem of complex variable theory(l) holds
that the mapping of a closed contour in the p-plane encircles
the origin in the F-plane for every zero enclosed, if no poles

cL? the
contour must contain the entire right half of the p-plane.

are also enclosed. To investigate‘the stability of A

Such a contour is the imaginary axis and a semi-circle with a
radius approaching infinity. By translating the origin to
(1,0), the statement can be made that F will encircle the point
(1,0) for every zero of 1-F in the right half plane. Because

F vanishes on the semi-circle, only values along the imaginary
axis need be considered. Therefore, one is led to the Nyquist
criterion for stability which states that an amplifier will be
stable if F (jw) does not encircle the point (1,0) for all
frequencieé between -« and +~. The negative frequencies can be
eliminated by the observation that

F(-ju) = F*(ju) (2.2-2)

because F contains polynomials with real coefficients.

A sufficient (but not necessary) condition that the Nyquist
criterion be satisfied is that the amplitude of F always be less
than one when the phase shift reaches 180°. Such a requirement

(1) Thomason, Linear Feedback Analysis, pp 133-142
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excludes the\positive real axis beyond (1,0), making encircl-
ing (1,0) impossible.

Because F'can be written as the quotient of two finite
order polynomials, then ‘

M
ST jutd)
‘o J
F(jw) -F, JN (2.2-3)
TT@ + jurd)
1
i=0

where F, = -F(0)

and 1? = %% Yj = zero of F[i.e. F(yj) = 0]
P = :_;.1_ = i =
T3 5, 84 pole of F[l.e. F(ai) 0}

From complex variable theory, F(jw) may also be written as

F(jw) B(w) exp [j (w + ¢(w))} - (2.2-4)

where B and ¢ are real numbers given by

M \
TT7 1+ (wr?)z
B(o) = F_ 18 (2.2-5a)
-r1. 1+ (wrg)z
i=0
M N
¢ (w) = §: Arctan @r? - E: Arctan mtg
3=0 1=0 (2.2-5b)
2.2-3 A
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- The stability requirement can then be expressed as

B(wo)

A
fu-—

(2.2-6)

where

]
t
=

¢ (ug)

Steady oscillation will occur if the phase shift reaches
180o at a frequency for which the amplitude is one. .In this case
some poles of ACL lie on the imaginary axis. For larger values
of A, complex poles with positive, real parts exist and give
rise to divergent responses.

An asymptotic expansion of terms similar to those appear-
ing in equation 2.2-5 can be performed as follows:

\/1 + (w1)?2 = 1
for 1 > wrt (2.2-7a)
Arctan wr =z O
\/1 + (w1)?2 = wrt .
for 1 < wt (2.2-7b)
Arctan wt = 1w/2
ISR
Then Fog j
F wt:>1
B(w) = -% J (2.2-8)
P
w pad D)
w1€>1
' . -k
¢(‘9) = 2

2.2-4
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where k = the number of poles with wtP? > 1 minus the
number of zeros with wt® > 1.

In this approximation, a '"frequency of gain cross-over" (mc)
for which B = 1 can be calculated according to

T ) v
. J
wCT?>1
we = Fo Tj_ T ‘ (2.2-9)
P

1
w_Ttt>1
C 1

A corresponding time, tes is given by

tc = = ' (2.2‘10)
The amplifier will only be stable if k < 2 for w < W The
case for k = 2 can be ambiguous because of additional phase

shift neglected in this approximation coming from higher fre-
quency poles.

The convenience of the asymptbtic approximation becomes
clearer if one considers the behavior of the ‘logarithm of B(m)
as a function of the logarithm of the frequency. If such a
log-log plot is made, then only-straight lines with slopes pro-
portional to k are involved. As the frequency increases past
a pole, the slope steepens, while a zero causes the curve to

flatten. By using log-log paper for such plots, the alded com-
plexity of calculating logarithms is avoided. Usually it is

also pointless to multiply the logarithm of B by 20 to ohtain
db or to divide w by 2 to use frequency in Hertz. Because
t is often directly calculated, the abscissca can sometimes

2.2-5
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be conveniently plotted in units of time given by the recipro-
cal of w.

A typical case with two poles and one zero is given in Fig-
ure 2.2-1. From this type of graph, the influence of the "break
points'" at the poles and zeros is clearly illustrated.

2.3 Special Cases

The following special cases often result in practice
either exactly or approximately.

2.3.1 Single Pole

Sometimes, at least for frequencies below gain cross-
over, the feedback factor contains a single pole. Because this
case never oscillates, the use of such a dominant time constant
is a simple method of achieving amplifier stability. The feed-
back factor can then be written as

-F . ’
F = 0 (2.3.1-1)
(1 + p1) ‘

and the closed loop gain becomes

1l E afr ] 1
A = —{(—Y)= — ‘ (2.3.1-2)
. “cL - T *
B |1-F B 1+F0 il PET
o
For Fy >> 1, A, becomes approximately
i -1 1 <
B 1+ptC
where t_ = gain cross-over time =
o
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F(p) "

(1 + peD) (1 + pcb)
F, = 105
. k=0 ° 4
. 0o _ -
B 16° 19 = 10745
10" 4+ TE’ = 10-1s
3
107 - rg = 10-3s
102 4+
10! 4
0 k=t b
10 } | \ |- L L e b
w - 100 10 10° - 10Y 16
t » 10-! 10-2 10-3 10-3

Figure 2.2-1 - Typical Asymptotic Response Plot

2.

3-2



Thus, the rise-time of the closed¥loop response is decreased
from that of the open-loop response by the feedback factor -

at least if the amplifier internally has sufficient current and
voltage dynamic range to remain linear.

2.3.2 Two Poles

If the feedback factor possesses only two poles,
osc111at10n still does not occur. In this case

-F ‘ :
F = 0 (2.3.2-1)
(1+pt,) (1+pty)

and for F0 >> 1

-1 1
Ag = & (2.3.2-2)

TatT TaT
A B A B
1+p ( F )* PiF
(o)

0
If this response is to be critically damped, then the roots

14

must be real, implying
2 2 = : -
At TR 4 FO AT | (2.3.2-3)

A

Solving this equation for the case where t, < TR»

‘one obtains

t
. . _c .
TA = TB/4FO T (2.3.2 4)
'B
where t. = gain cross-over time = =
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The closed loop response becomes

(2.3.2-5)

For this case, the loop is still basically stabilized by a
single dominant pole, because the no-ringing condition allows
a second pole only to appear at frequencies above gain cross-
over. However a slight improvement in rise time is achieved
because two equal poles in the closed loop response at tc/Z
replace a single pole at tc.’ (the: In general, the 10%-90%
rise time for a multiple-pole system is given approximately
by

N

w2 (2.3.2-6)
i=1 ’ '

where the T; are the N poles of the closed-loop transfer func- -
tion.)

2.3.3 Two Poles and One Zero

Often bandwidth considerations do not permit one _
of two poles to be much larger than the other. A ringing response
can still be avoided if a zero is placed near gain cross-over.

For this case the feedback factor becomes

-F_ (1
F = o~ *PTo) (2.3.3-1)
(1+pTA)(1+pTB) .

2.3-4



and the closed loop gain can be written for Fo >> 1:

l+pt
_ -1 0
cL B TatTp ZTATB (2.3.3-2)
1+p'[1 + } +p
o FO : Fo
The condition for critical damping is then
TatT 2 4,1
A 'B A'B
T + = : - (2.3.3'3)
o] F0 J Fo

For F, >>~ 10 and the two poles not differihg from each
other by more than an order of magnitude, this condition be-

comes approximately

TAT

- A'B _ -
o = 2\ = 4t - (2.3.3-4)
o _
’ TATB
where t. = gain cross-over time = T
oo
The closed loop response is then
l+pdt
-1 C
A = —_— 2.3.3-5
cL T (Trp2t )2 (. )

T = ZtC \/FO (2.3.3-6)



compared to the single pole case where

T o= t F ‘ (2.3.3-7)

Thus, for the same cross-over time, the value of the sta-
bilizing poles for the two pole system is considerably less
than that for the single pole system if the feedback factor is
large. Because standing current is often required to charge
roll-off capacitors without rate limiting, the two pole -

one zero system may achieve more bandwidth at less power than
the use of a single, dominant pole. 4

A convenient method for generating the zero is to
place a pole in the g-network. In this case:

B = B, (1+pt) (2.3.3-8)

and ACL becomes

1

A = -1
By | (*p2t)2

cL

(2.3.3-9)

The inverse transform for a step function input is
then the critically damped waveform

v :
out _ - t t -
_v;f = 1 (1 + ?) exp ( 1) (2.3.3-10)
where T = 2t

"2.3-6



If the B-network has no complex components, the
-inverse transform becomes

(o]
c
+
I
-
t
———
p—
1
-t

) exp (%) (2.3.3-11) -

which has a maximum overshoot at t = 21 = 4tC of 13.6%.

2,3-7
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3.0 TRANSISTOR EQUIVALENT CIRCUITS

A transistor is a three terminal device. For analysis
pufposes, one of these terminals may be considered the refer-
| ence or ground terminal, leaving four complex parameters to
describe the behavior at the other two terminals. If the

base equivalent circuit. This configuration is most amenable

to analysis by basic transistor theory and forms the starting
point for our calculations.

’ base is chosen as the ground terminal, one obtains the grounded-

3.1 Grounded Base

A simplified grounded base equivalent circuit is shown
below.

v Emitter . Collector

e V.

oL L 1 o
)

! — e _ e
T ‘ /L Ce r. C = =

ob +r|

L kT . ) zé ) kT
qu € a ch
- 1 -
T, = 5t = Cer'
Q
COb = collector output capacity

The base spreading resistance referred to the emitter has been
neglected as being small compared to T, This approximation is
usually valid for collector or emitter currents (IC,Ie) less

than 1 mA. The reverse voltage feedback from the collector to

3.0-1



the emitter has also been neglected Because of the small
coefficient (typically f0'4). A1l the frequency dependences
of the emitter-base junction have been lumped into a single
time-constant (Ta)’ with such effects as diffusion time delay

neglected. This transit time is usually of the arder of 20%
of Ty

3.2 Grounded Emitter

The grounded base equivalent circuit can be exactly mani-
pulated to the grounded emitter configuration shown below.

C
c
Vb Base Collector

— ANA
: T
c

w
[}
=]

C

i

c collector-to-base capacity’

The same approximations made in the grounded base configura-
tion are still required here. Notice that the collector-to-

base capacity is not exactly equal to Cob’ because Cob includes

stray capacity to the header and to the emitter, which is usually

of the order of 1 pF.

] Vc
—L- _L ' \Y Vv
e e c ,-C v *Vp _
l T % Bre I ob “c ——r—re = —

e



3.3 Grounded Collector

The grounded emitter equivalent circuit can be exactly
manipulated to the grounded collector configuration shown
below. '

C

e
“j?if‘“‘j
Vb Base A B Emitter e

o
v

. ‘ BT _L‘ ' v,
r. ; —c - Ic boC ¢ T, b2

4.0 SINGLE TRANSISTOR AMPLIFIERS

Three simple amplifier circuits are analyzed in the follow-
ing three sections. These circuits generally form the "build-
ing blocks" of more complicated systems.

4.1 The Grounded Emitter Amplifier

One of the simplest amplifier circuits is the single ground-
ed emitter stage. In general such a stage can be represented

as yd
1l
Y
Il >
i
s
s

where YS = source admittance

YF' = feedback admittance

YL~ = load admittance

3.3-1



Using the equivalent circuit for the transistor given on
page 3.0-1, the circuit becomes

~
-

ig t
where » Yé
Y'
F
L
YL

Setting up the

The determinant

1
YS * Bre * pCe

1
YF * ?Z * pCc

YL * p(Cob - Ce)

C

node equations for the above, one obtains

] 1
4 1] |

- (4.1-2)



and the output voltage (VZ) is related to the input current
(ig) by |

1
ZZ - (8 - Yp) (4.1-3)
1 v ! ' ' ! ' ' ' ¢
s Yo Yy + Yo Yo v YL Y[ + YL g

A typical condition for source and load admittances is

shown below
? 1.
' | | —[ oV
t%i/ .

' 2

\;--4
A\
\

A\

If one defines the following auantities by

C. = C. +C :
1 S o (4.1-4)
_ €
g1 = Gg* ¢
CZ = Cob B Cc * CL
1
Gs " Rg
g. = 1
C rc
Gy = -
L .
L 4.1-2

—~
'~



then

LN =

Lo o I

t

Y,

= gl -+ Pcl 7 (4.

1-5) -

Substituting these values into eq. 4.1-3, the transfer function

]
I (4.1-6)

p2B]

(4.1-7)

becomes
\J - 1 - pCr 1 !
2 _ Ee gc PheTe | 1 - Te/T,
s [818c * 216 + g6 + 8c8] [t A+
where
A - (87 * 8o * Gp) Co* (gc *+ G) €y + (gg + g:) Cy
818c * gIGL * chL t 8c8e
B - C1Cc + C4C; + C .Gy
B18c * 810 * 8.5 * g8
A useful set of approximations are the following
g >> 1
Rg >> T (Gg << g)
r. > Rg Vi BT (8. << gp)
For this case
Ec8e
818c * 216 * 80 * 8.8 g6, 1+ 816;

4.1-3

} (4.1-8)

.

\~



The transfer impedance then becomes

Voo ] MRy (» L - pCry |
— = —_—§Iﬁ§~ \ (4.1-9)
S 2
1+ T 1l + pA + p?B
c
where Mi = current gain into a zero-impedance 1load
) M = g_e = B -—.._RL__
i g; RS + Bry

The output impedance is reduced, compared to the grounded-
base stage, by the current gain. This effect can be made
explicit by writing equation 4.1-9 as

\' T 1l - pC.r
2 _ c ce .
T; = Mi Ry L MI T+ pA 7 p’B (4.1-10)

Thus, the output resistance (Rout) given by

Ryt = M% - (4.1-11)
1

is reduced from the collector-base resistance (rc) by the cur-
rent gain (Mi). The reduction (k) in effective current gain
caused by the non-zero output resistance then becomes

X = L = 1 o (4.1-12)
L gcge
1+ g 1+ Sm
out g1°L
4.1-4




and the transfer impedance becomes

\'s 1 -pC.r.
,1_3 = kMR, c ¢ (4.1-13) -
s 1 + pA + p2B
The coefficients A and B are then given by
A =z k (Mvcc + Cl) Rl + CZRL ‘ (4.1-14)
B = kMVere C1Cc * CiC, ¢ CCC2
where
R, = 1 . zero-load input resistance
1 g,
. Rg B T
1 RS + BTy
. Ry
Mv = zero-source resistance voltage gain = o
: e

Although the roots of the denominator of equation 4.1-13
can be determined exactly using the quadratic formula, two
cases where approximate factoring can be applied are particu-
larly interesting. In the first case, the load time constant
(CZRL) is assumed dominant so that .

CZRL >> (MVCC + Cl) R1 (4.1-15)

4.1-5



Then, the two time constants (11,12) implied by equation 4,1-13
become ' : '

T, = k CRp = Gy (RL | | Rout) (4.1-16)
C,C
" 17c
2 F Ry C1“Cc“cz}
For the usual case where C. << C,, then
T, = Rl [Cl + Cc] (4.1-17)

Thus, the input and output time constants are effectively
separated as one would expect ignoring the Miller Effect.

In the second case the Miller Effect is assumed to be
dominant so that

CZRL << (MVCC + Cl) Ry | ) (4.1f18)

and

le (MVCC + Cl)

~
—
n

CC(C1 + CZ) + CICZ

2 e CC + Cl/Mv

4.1-6



If also Cc >> C,/M then

1" v?

T, = Ty (€ +CY) (4.1-20)

4.1.1 TInput Admittance and Voitage Gain Representation

Often in the calculation of the transfer function

for cascaded stages it is convenient to represent each stage
by a voltage gain and by an input admittance. - The parameters

for such a representation can be simply obtained from equa-
tion 4.1-1.

The voltage gain is defined as the gain of the

device when it is driven from a zero-impedance source. Thus

MV = 1lim : (4.1.1-1)

From equation 4.1-3

-(g. - Y.
M = e F' (4.1.1-2)

For the configuration shown on page 4.1-2,

C
g. - g l-prg : g
M = -|-& "€ € €l (4.1.1-3)
v G, + Cc * CZ
L " & 1+p 3
L c |
4.1-7

./



>> R
For rc

M . EL 1 - pCCre (4
\4 T, 1 + p(CC +C,) R -
The input admittance is given by
i Y, ' +og ]
Yin = s Y +YF'[L, =8 (4
1 LYo * Yg

The term YS' is the admittance directly connected to the input.
The term proportional to YF' results from the Miller effect and

can be written as

.1.1-4)

.1.1-5)

' L + ge _ ' +
YM = YF vyl YF (-MV 1) (4.1.1-6)
L F
For the configuration shown on page 4.1-2,
- c =
+ G 1+ pG E
- e L L e
Yy = |8 *pC T +C
M c c + G c 2
Ec L 1+ P
| L gCJ
(40101'7)
4.1-8
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rr
Fo c

and

>> RL and R

>>

<

4.1-9
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4.2 The Emitter Follower

The emitter follower (grounded collector amplifier) is
commonly used when signal inversion is not desired. Such a
circuit can be represented by

™

, v
i T Yg |
-8

A
T

where YS = source admittante
YL = load admittance
4.2-1



Using the equivalent circuit for the transistor given in

Section 3.3, the above circuit becomes

~

)

where
' _ 1 _
YS - YS + ?Z * pcc YS T8t pCc
- 1 _ e
Ye - BT pCe B pCe
e
' = ( -
Yy = Yp +p(Cop - C) =Y +p(Chy - C
1
g = ——
©e T,

Setting up the node equations for the above, one obtains




The determinant then becomes

A= | | (4.2-2)

‘ .
Yo g Ye * Y * g

L

=~
]

-1 ? t ]
Yo Yo + Yg Y|+ Yo g+ Y_ Y

and the output voltage (V,) is related to the input current
(i) by

\' Y + g
Y& = — — £ ' (4.2-3)
s Yo Yo + Yo Y + Y g+ Y Y]
4.2-3



‘ _ 4.2.1 Bootstrapped Source Resistance

‘ ‘ Often part of the source resistance is bootstrapped
| in order to obtain improved linearity, higher gain, and larger
| dynamic range. Such a circuit is

1
i JD Ra< é\‘\ v
s A Y > "2
S T
o
L
//
Ry Ry C
For the case where R is large compared to times of inter-

A
est, C can be approximated by a short circuit, and the follow-

ing equivalent circuit applies.

A
AN
Vi . v,
e_——
‘ ; ' ) R Ve
1 ] I g & S (D] e
"
Y g )g )/ e
4.2-4



Equations (4.2-2) and (4.2-3) can be formally modified to
include bootstrapping by replacing 8 with B8' and Y, with -

L
YL“,
where
R
' = g —A ~ (4.2.1-1)
Br, + RA ,
1
Yn - Yl + 1
L L Ry
4.2.2 Parallel RC Load and Source Impedances
A typical condition for source and load admittances‘
is shown below. : /,r’
v

isTCiD §RS T Cs gRL i CL ’
PR T

)/’ 7 : ,

)/ /

if one defines the following quantities by

C, = Cg+ C, (4.2.2-1)
Cz = Cp* Cop - C
Gy = G+ g
G, = Tﬁf
1
I  4.2-5

~
——
-
P



then

-
]

If

G1 + pC1 (4.2.2-2)

Gy * PG

the emitter follower is bootstrapped, the simple °

substitution discussed in Section 4.2.1 applies here also.

Substituting the above values into equation (4.2-3),
one obtains for the transfer impedance, under the approximation

that g >> 1,

2
15

where

out

1+ p1
g { ——r il - (4.2.2-3)
L out L+pA+p BJ

output resistance

Re ||

S c
T, + 3
rece

]
Ry * Rg Ry *+ 1,

Ta R. + + R * T R, + + R * kC2Rout

L Te S L " Te S

B 8

k {TaTl + T1C2re + TaCZRS'}

output resistance gain correction

1
1+ Ryt
Ry,

4.2-6



a unity gain

k

1n

so that

Rout <<

which implies

re <<
1
RS /B <<
. RS <<

For this case

voltage amplifier,

)

* Rg

Ry f
c

1+ 2

e

A common application of an emitter follower is as

For this case one wants

(4.2.2-4)

(4.2.2-5)

(4.2.2-6)

R (4.2.2-7)



For the case where'thevsource time constant is dominant so
that

' L S
T, > CZRout * T, R (4.2.2-8)

Then the two roots of the denominator become approximately

T, 207 (4.2.2-9)
C C
2 2
T g ot 1+ == + ==
B a Ce ¢y
if also 1, >> 1p.

4.2.3 Series RC Load Impedance

In the case where a series RC component is present
in load impedance, the circuit becomes for a capacitive source,
such as when the emitter follower is bootstrapped

v,
1 N v
" : >
} r L Rp2
| SRy L1
CL2
e ]: ‘

4.2-8



Then

Y5 = pey | (4.2.3-1)
2
v = cw1Buz * P(Cy0ip * Cpapy * Cpplpp)*R?Cy, Gy
L G, + pC |
- PLz2 T P2
where
1
G = —
L1 R
1
G = e
L2 R,

Then, substituting into equation (4.2-3), one obtains

\ R (1 + pt )(1 + prtys,)
A a L2 (4.2.3-2)
ig 1+ pA + p2B + p3C
where
A = B(Cy *+ Cy) ry * tp) + 1y, + BCR + Cp Ry
B = Br (Co + C(rpy * 1y * CpoRpq) *

BCIRp (g + 1) * Ty Ty

C = 8r 715 Ry G (Co+ Cpyp)
1 - Rui G
L2 = Rpy Gy 4.2-9

Prasy



RLl >> Te
8 ClhRL1 >> B 1
| Lz 7 L1
vthen
A = BCl
B = 8Cy
C = BCl

ordered such that

For the case where

R

R

R

L1

L1

L1

(4.2.3-3)

g, * Cp, Ry (4.2.3-4)
(12 * Cpp Te)

Te T2 (Co * Cpy)

If the roots of the denominator of equation 4.2.3-2 are

A 7> Ty >> g (4.2.3-5)
then
TA = BCl RLl + CLZ RLl (4.2.3-6)
I ¥ (Rpp + 1)
B ) ; CLz
BCI
¢ T T (Cu *Cppd
4,2-10

8
1



4.2.4 TInput Admittance and Voltage Gain Representation

Often it is convenient to treat the emitter fol-
lower as an impedance transfer device. In this notation the
input admittance and the voltage gain become important.

The input admittance can be found by solving equa-

“tion 4.2-1 for Vy- Thus
: ig : Y, YL' .
Y = 7 = Yo + —— (4.2.4-1)
IN vy S Yo+ Y "+ g

The terms in Yq and Y. result from the admittances directly
connected to the base. The remaining term is dependent on
transistor parameters and on the load admittance, and repre-
sents the impedance transfer characteristic of the transistor.

The input admittance can be written as

YIN = YS + YQ . (4.2.4-2)
' -—
where Yoo = Yg+ Y_ =Yg+ g  + pC,
- t
Y _ Ye YL
Q ) Y + Y "y
. e L e

The quantity YQ then becomes the term of further interest.
Inverting and simplifying gives

g
Q Y—IT- = Fezt i B (4.2.4-3)
€
1

~N
L}

e
where ' yA =

4,2-11

Pea



Substituting for Ye and assuming that g is large compared to
unity, one obtains

]
T + 7 (1 + pt)) .
g = 8= L a (4.2.4-2)

1+ pBr,

v For the series RC load impedance discussed in
Section 4.2.3, '

- 1+ pry,
2, = Ry R, , )
1+p [TLl oy, (T RLZ)} TPTOTTL2

(4.2.4-5)

where Cob - CC has been included in CLl" Substituting this
value, one obtains

B(re + RLl) 1 + pE + p?F

Zq = (4.2.4-6)
1+ pBt, 1+ pH + p?D
where
H = =< + T (1 + Ll)
1
L L2 RLZ
D= 172
R R
L2 L2
E = R (Ci, +C_+C 1 + +
P L1 e L2 ( T RLI)
Foo= CpaRppRy (€ + Cpy)
R, = :e+§kl ' 4.2-12
e L1 :




For H2 >> D, the denominator can be approximately
factored such that

Rin 1 + pE + pZ2F 1
ZQ,E ( (4.2.4'7) :
1+ rC;p Rin (1 + pBTa)(l + pD/H)j
where
Rin = B(Tg * Rpy)
1 R R, .\
L1 L2
Cry = - Ciqy + Crpy 1+
IN [ } [ L1 L2 ( R )
B RL1 T L1

Thus, to a first order approximation, the input resistance is
increased over the load resistance by a factor of g, while the
input capacitance is decreased by nearly the same factor.

For R

L1 >> Ry and Ry >> 1,
C.. + C
Cy = L1 L2 (4.2.4-8)
8
C.. C.. R
D/H = L1 "L2 L2 (4.2.4-9)
Ci1 * Cp2 1
E‘z r {C, .+ C +C 1+ Rz | (4.2.4-10
= e L1 L2 T f -2.4-10)
e
F e 1, Cp, R, (€ +Cpy) : (4.2.4-11)




The voltage gain can be found from equation 4,2-1

by solving for the limit

M = lim Va¥s - Te * 8
v Y > o 1
S 1s Ye ¥ Ee * YL
For B8 >> 1
1 + prt
Mv = T,
1 + pT + ]
2L

For ZL' given by equation 4.2.4-5,

M. = RL1 (1 +pr )(1+ prp,) )
v
\RLI T, 1+ pM + p2N
where
Moo= 1y * (Cpp * Cpp + CJ Ry
No= ot (G * Cpp) Ry
_ Te Ry
R, = :
re+RLl
4.2-14

(4.2.4-12)

(4.2.4-13)

(4.2.4-14)




4.3 The Grounded Base'Amplifier

When a low input impedance and a high output impedénce

"are required, a common configuration is the one shown below.

where -

<
]

source admittance

<
1

L load admittance

Using the equivalent circuit of Section 3.1, the above circuit
becomes :

iSA Y' ' Vv
S YL 18e
] ?
where Ys = YS t g, * pCe

1

Yy = Yp *teg.t pCe

g = 1l/r,
]

g, = 8./¢ . 4.3-1



The transfer impedance is easily found to be

= = = C O (4.3-1)

For the typical combination of load and source impedances

shown below
A I

C R T ‘L

> Y
L )

the quantities of equation (4.3-1) become

YS = Gg + gé + p(Cs + C.) (4.3-2)

e
Yo = G+ g, *p(Cp+CO)
G, = Fl_;
G, = T‘-llt

4,3-2




Equation (4.3-1) can then be written

(4.3-3)
VZ - ‘ Ee
i Co ¥ COTT (C, * C
i S e L c
G_ + G, + 1+ pee—ra—-T"5111+ pt—ru-—"_
[ (S ge')(L gC)[ st.,.gel}l' pGL+'gCJ
With the approximation that
R << r. (4.3-4)
'occ R
Te s
Then
\_/_2 ) aRL
i ] Ce
s [1 * pT, (1 + C—)J [1 +p (CL + Cc) RL]
(4.3-5)
4.3-3




5.0 THE DOUBLE DIFFERENTIAL AMPLIFIER

A common configuration often used where dc stability is
a requirement is the double-differential amplifier shown in
Figure 5.0-1. The advantage of this configuration lies in
the fact that the second stage can be used to balance the oﬁeraf
ting conditions of the first stage via an external feedback
loop. High common mode rejection and dc stability determined
only by the quality of the input transistor then result.

In this section we wish to calculate the transfer function
of this amplifier in the differential mode. Common mode effects
caused by Re1 and Rez will be neglected in this analysis. The
equivalent circuit of Figure 5.0-2 then results from the tran-
sistor circuit given in Section 3.2.

- The analysis of this configuration in general is extremely
tedious, and useful results can only be obtained by machine
computation. However, in this report we will set up the equa-
tions in matrix form so that such computation could be per-
formed if needed.

In usual practice this problem can be simplified because
the amplifier is driven from a single-ended source, and one of
the output collectors is grounded. If one also assumes a cer-
tain degree of symmetry, the calculations can be performed by
hand. These results are given in Section 5.2.

5.1 General Solution

In linear circuit analysis, a complex set of equations can
be written in the matrix form

I = YV (5.1-1)
5.0-1
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where for this case

(]
L
~
[
Pt
-

i, 0, 0, 0, 0, 0, 0)

(72 BT~ S 7 B SR

o

[=)]
P Ay -,

< < < < < < < <
(¢} o
[a%] L B
L

Y = 8 'x 8 matrix of admittances

5.1-3
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From the equivalent circuit of Figure 5.0-2, Y becomes

Y1+Yc1
+Yel

“8e1

Y2+Y

+Y

c?
el

+Y

c2
+ge2

el
“8e2

c3

+Y

cl
el

Y, +Y

4

+Yc4

+geS‘

“Be3

5.

c2

c2
+Ye

4

Yo+Y

Yes
+ge4

1-4

RLY

ed

+

Ye1 0
“8e1 -Y
-Yc4 “Be2 .
0 0
Y6+Yc4 0
Q 8e1%8e2
+Ye1+Ye2
0 0
(5.1-2)

-ge4

ge3+ge4

A g

e

f

Ye3+Ye4f

,\\



In the usual manner, equation 5.1-1 can be solved for a given
output voltage (Vi) according to

v; o= lYil . (5.1-3)
where
Y] = determinant of Y
|Y;| = determinant of Y with the iR co1umn replaced
' by 1l. (IT = transpose of I = I written as a

column vector.)

501-5 .




The determinants can be simplified by elementary opera-

tions and then expanded in cofactors.

are added to row seven, then

Y. +Y

1 'cl

+Yel

cl
+gel

el
“8e1

c?
'+ge2

e
“8e2

Y +Yc

1

+Yc3+Ye3

c3
+geS

el
“8e3

5.

0 0
-YC2 0
0 Y3
Y4+Yc2 0
HeatYey
0 | Y5
+Yc3
-Yc4 0
+ge4
0 0
Yoy 0
“8ey4

1-6

+Y

0 Y

c4

c4

(5.1-4)

If rows one and two

+YC1 0
fYCZ 0
Yo _YeS
Yoo -Ye4
0 “Be3
0 “Beq
0 0
0 ge3+ge4
+Ye3+Ye4




|B

11!

Expanding this determinant in cofactors, one obtains

Yl = -3Ye1 * gelz A1+ ;Yez * gezz 1A, (5.1-5)

where A, and A, are 7 x 7 matrices. Expanding A; and A, in
cofactors:

Y| - {Yel * gels %Ycl Byl + Yy + Y ) |312|2

+;Yez * gezs chz Byl + (Y, + Y _,) |B22|$ (5.1-6)

where the B - matrices are given by

Yot¥eo = Yo, 0 0 Yor¥eo 0
+Ye2
0 0 Yes 0 Y1 “Yes3
Yoo Y4*¥eo 0 Yeq Yo “Yeuq
+ge2 +Yc4+Ye4
% ) (5.1-7)
0 0 ' 0o 0 g
+Y03
0 Yeq 0 Y6 0 “€eq
*8e4 *Yeq
0 “You 0 0 0 Be3¥8ey
“8eq +Ye3+Ye4

5.1-7




12|

Y, +Y

+Ye2

Y3+Yc1

c3+Ye3

el
“Be3

c2

Y4+Yc2

Yc4+Ye4

c3

+Yc3

5.1-8

+Y

cd

cd

el

ed

“8e3

ge3+ge4
e3*¥es

(5.1-8)

i



1B, |

Y.+Y

cl

Ya+Y oy

c3+Ye3

c3
+ge3

el
“8e3

c3

5.1-9

cd

+Yc4

cl 0
Yei1 Yes3
Ye2 Yesq
0 “8e3
0 "Eey
0 “Beg
0 ge3+ge4

Ye3+Ye4
(5.1-9)




Y1+YC1 -Ycl | 0 0' 0 0
4 +Ye1
Yo Y3+Y g 0 Y3 0 Yes3
T8e1 Yc3+Ye3
0 0 Y4+Yc2 0. -Yc4 Yoy
Yc4+Ye4
0 -YC3 0 YS 0 -ge3
*8e3 B P
0 0 Yeq 0 Y6 “8e4
*Beq *Yeq
0 Ye3 Yoy 0 0 e3¥8e1
“8e3 “8e4 Ye3+Ye4
(5.1-10)

Further reduction of these matrices becomes overly tedious
and will not be presented here for the general case.

5.1-10




In the foregoing analysis, the admittances were defined

by Figures 5.0-1 and 5.0-2. They are related to the quantities
used in Section 3.2 by

e

Yo = —°+ pC, (5.1-11a)
Y. = g+ pC, (5.1-11b)
- 1 ’ ‘
e . . -
_ 1
g = + | (5.1-11d)
C

Also, the collector output capacitance, Cob - Cc’ was assumed
to result principally from stray capacity to a grounded header.

This capacitance was lumped into the appropriate load admittance,
so that ’

Y, = YLs + p(Copy - Cop) (5.1-12a)

Y, = Y, +p(C,, - C.p) (5.1-12b)

Yo = Y.+ P(Copz - C.3) | o (5.1-12¢)

Yo = Ype * P(Copy - Coy) (5.1-124)
5.1-11 |




5.2 Symmetrical, Single-Ended Double-Differential Amplifier

~ Often the double-differential amplifier is used in an
inverting feedback configuration, resulting in the base of
Q; and the collector of Qq being grounded. Thus,

v, = 0 (5.2-1)
Y, =
Vg = 0
Yo = =

In addition; the bias conditions of Q1 and Q2 and of QS and
Q4 are identical; and, when matched transistors are used, the
following equalities are also valid:

el = 82 (5.2-2)7
Y'el = _YeZ
Y1 = Yoo
Yoz = Yoy

[N

Also, the interstage load admittances are made equal so that

Y3 = Y4 (5.2-3)
5.2-1

I\




With the above simplifications, the admittance matrix

becomes

Y, +Y

+Yc1

el
“8e1

3+Ye3
c3

Y

c3
+ge3

Ys

cl

+Y
e
+Y

3
c3

.2-2

c1'

0 -Yel 0
Yoz "8e Yes g
i
i
0 Eel Y3
Yo+ 0 “8e3
Yc3
0 ZYel 0 ?
+2gel 5
|
{
!
0 0 ZYe3 :
+2ge3l;
’!
/
(5.2-4)




Y|

and thg

L]
]

(i, 0, 0, 0, 0, 0)

The determinant can be
from the fifth row and
multiply the new fifth
row, and by 8e1 and add
minant then becomes

2Y
row by Yo

Y +YC1

+Yel/2

2

8e1/2

(ZYe1+2ge1)(2Ye3+2ge3) -YC1

-1/2

5.2-3

voltage and current vectors simplify to

simplified by factoring out 2Yel +
e3 * de3 from the sixth row.

(5.2-5)

(5.2-6)

_del
Also,

1 and add it to the first

0

c3
+ge3

-1/2

»Y3+Ye
+Y

3
cl

-1/2

c3

0

to the third row. The resultant deter-

0 0
el Yes

0 Yes3

0 “Be3

1 0

0 1

(5.2-7)

2

e




Expanding the determinant by cofactors, one obtains

: Yel IAZI
Y| = K[y, + Yot |Ali - Y, . + A4l (5.2-8)

where K = 4(Yel + gel)(Ye3 + geS) and Al’ Az, and A3 are 4 x 4
matrices given by

Y3+Y 3 0 Yz o Yes
Yc1+Yc3 ’
0 Y3+Ye3 0 -YeS
Al = Ye1*Y¥es (5.2-9)
. 0 | Yg “Be3
*8e3 Y3
-1/2 -1/2 0 1
T3t ¥es Y3 -gq1 Y s
Yat¥es
0 0 | i
0 Ye3
A, = (5.2-10)
-YC:’) YS 0 'ges
+ge3 +Yc3
-1/2 0 0 1

5.2-4




0 Y3+'Ye3
?cl+Yc3
8e1/2 0
'Ycl
|A3| =

0 -Yc3
*8e3
0 ' -1/2

Evaluating the determinants of the A-matrices gives

Y .Y L2 g
1Ayl = _e3 ¢3 , Ze3 ¢3 (Yg + Y
2 2

P Y (g r Yoo+ Yo+ Y ) (Yo +Y_5)

Yo Yoz (Yg+ Yoo #Y )+ Y

cl

c3

c3

c3)

+Y
c

“8e3

(5.2-11)

(5.2-12)

(5.2-13)



el Ye3
lA5] = {Ycl - '5”} {(Ys PO o= Y Y eg)
‘ . e3 '
+Y_s ("E_ - ch) }“ | (5.2-14)

Combining terms then yields for the determinant of the
admittance matrix '

|

(Y3 + Y ) (Yg + Y 3) + Y ch]

v 2
Ee3 c3 Ye3 Yc3
+ I == (Y3 + YCl + YCS) + ___E_.__

8e3 YC3
e {(Ys Y + Yog) * Yo Yog v =

(5.2-15)

5.2-6




Ty

vs|

We now proceed to calculate the transfer admittance by

determining the dependence of V

is given by

;Y
+Y

el
cl

el
“8e1

Y3t¥es

c1+Yc3

el
“Be3

5

cl

Y3tz

c1+Yc3

e3
“8e3

5.2-7

on i,.

2

The matrix for V

5
—Yel 0
el 'Ye3
“8Be1 ’Ye3
0 “Be3
ZYel 0
+2ge1
o 2Y
+2ge3
(5.2-16)




Performing similar elementary operations as used in

reducing |Y|, one can simplify equation 5.2-16 to

Y = X

V5|

B, |
1, g

ARERY

where B, and_B2 are 4 x 4 matrices given by

‘ Y3+Ye3
fe1*¥es

-1/2

0 ge1
Y3+Ye3 0
Yc1+Yc3
0 0
-1/2 0
5.2-8

(5.2-17)
Ye3
Ye3
(5.2-18)
“Be3
1




Yc1+Ye3
Y1 0 Y3*+¥e3 Yes3
*8e1/2 Ye1*¥es
lel =
0 Yes 0 “8e3
T8e3
0 -1/2 -1/2 1
Evaluating these determinants one obtains
- i2K Ee1 8e3 Y3 Ycl * Yc3
Y el = - 1+ 1 - X
V5 2 Y N
3
where Xy is a non-minimum phase term given by
X Ycl + Yc3 + Ycl YcS _ Ye3
N = .
Bel  8e3 8e1/ \8e3/ Y3 * Y1 * Ye3
5.2-9

(5.2-19)

(5.2-20)

- (5.2-21)




The transfer admittance then becomes

;o Vs T8e1 83 (Y3 * Yoy + Y 5)(1 - Xy) (5.2-22)
R 2-22)
2 . 2|Y'|
where
Y
ey = 2L
X
Combining terms, one obtains for the determinant
\
' i
lz.l = Y /Y Y oy ESE - Y 1 - ESE 1 'y
' 2 5 3 c3 c3 ' !
Y3 2 2Y3 i
)
g .Y | Y
+ el "cl st {1 + 'cl (YeS _ ZYS")]
2 L YS el J
!
Yo Bes [ e Moz ZYcl"}
' B B ‘ ' )
ZYS [ el e3 \ gel;
(5.2-23)
where
Y
LI el
Y2 - Y2 * 2 * Ycl
|
Yo = Y5+ Y.g
?
Yg = Yz + Y.+ Y3
"o
Y3 = Yg+ Y.+ Y3+ Y3
5.2-10

Lo
[&aN



If

L S R - (5.2-24)
2YC3 << Bg3 . . » (5.2-25)
Ye3 . _
Yoy Y;T << 8e1 (5.2-26)
then

Z ~ 'gel geSI -
T - : Y 28,51 8.1Vo17 Y .2 .1 ]
1ty n, c3%e3: ®elicliy c3%e3 | i
247, [Ys Y3 +— J" 7 LYS * T{“J [“

(5.2-27)

5.2.1 TInput Admittance and Voltage Gain Rgprésentation

The voltage gain, defined by

’ (5.2.1-1)

can be found directly from equations 5.2-22 and 5.2-15. In
this case the equations simplify to )

Y .+ Y
- < €31 - X
81 Be3 Y3 (1 ' 3 )( N}

21Y"|

(5.2.1-2)

5.2-11
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where |Y'| = {Y + Y o+ Y o+ Y

For the same substitutions as made in simplifying equation 5.2-23,

M = “Be1 Be3 (1 - Xy)

v .3 Y 3 Y 3 |
2{y ' Y v, _€ C - Y 2 1 + €
{ 5 3. 2 c3 2Y3|

(5.2.1-3)
If
Ye3 \
Y.z | 1+ 77;*} << 8oz | (5.2.1-4)
and if
YC1 << go1 (5.2.1-;)
then
“Be1 8e3
MV = g3Y3’ (5.2.1-6)
24y Y, 4 B2 C2
5 3 2




In addition to the voltage gain, one genérally also needs
the input admittance, defined by

Yin = v | (5.2.1-7)
The determinant for V2 obviously becomes
|YV2| = 'K|A1|iz (5.2.1-8)

where lAll is given by equation 5.2-9., Because

1Yy, |
v, = IXT , , (5.2.1-9)
then
|A, |
i, |Y| Y, 7+ lag
YiN = N Yo+ Yot el Ye1 ™
V2 1
(5.2.1-10)
5.2-13




The first three terms result from the admittances hung
directly on the input. The last term, proportional to Y.
results from the Miller effect, motivating us to define

YMl by

1’

Y
- el A
YIN = YZ + YC]. + -7 + YMl (5.2.1-11)
where
i = Myp Yo,
|A, ]
2+ a4
M = -
V1

14, |

The numerator of the equation for the first-stage voltage gain

My, can be simplified using equations 5.2-13 and 5.2-14, which
imply that ‘

A ' A .
. 20 4 Agl) = Ee1 (Yo + Y ) (Yo * Y ) +Y . Y
2 3 - 5 5 c3 3 cl c3 °5
geS YC3 | Ye3
L Ya (Yo + Y ) (Yg +
FY D+ Y )+ Y 83y
cl c3 c3 2 c3
gel ' ' YC3
=4 - Yo ) (¥s Y5 * (8e3 - 2Y 3)
2 2
| ]
CYe1 Y5 Yes
» (5.2.1-12)
5.2-14

S
|\




Similarly,

= ' Ze3 ' ' Yo5? Vo3
1Al = Yo (Y.< ( - Yozl + Yo Y - n
(5.2.1-13)
If  2Y ; << g (5.2.1-14)
V.3 << go3 (5.2.1-15)
Yl
3
Yo << . 8e1 . (5.2.1-16)
el
YI
3
Yoz << . 803 (5.2.1-17)
el
then
g
My, = ol (5.2.1-18)
2 Y'+ 63
3 1 + Yc3 8e3
1 )
Y5 Y

5.2-15
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PULSE SHAPING IN PULSE-HEIGHT ANALYZER SYSTEMS

J. H. Marshall

July 26, 1966

1.0 INTRODUCTION

The choice of the correct pulse shape in pulse-height
analeer systems is often a series of involved compromises
between such factors as statistics, noise, accuracy and com--
plexity. In order to avoid the small chance that random
choices will converge on an optimum system in the presence
of so many interrelating factors, an analytical approach is
essential. To provide a basis for such an analytical design,
a theoretical treatment of the effect of pulse shaping on
pile-up and noise is given here.

2.0 ERRORS RESULTING FROM RANDOM EVENTS

In addition to systematic errors such as gain drifts or
bias changes, many experiments are subject to various forms of
random errors. For example, the number of radioactive decays
occurring during a fixed time interval is not uniquely pre-
dictable. Similarly, the number of pulses generated by thermal
noise during a fixed time interval can only be determined on
the average.

Extensive analysis of the statistical theory of such ran-
dom behavior is available in the literature(l). It will be
possible here only to summarize some of the main points of this
theory relevant to particle-counting experiments.,

(1) Harold Cramer, Mathematical Methods of Statistics, (Prince-

ton University Press, 1958).
._1_
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2.1 Statistical Distributions

Many experiments involve the repeated sampling of a ran-
dom variable. 1In such experiments, the experimenter usually
wishes to know relevant parameters of the statistical distri-
butions describing the phenomena in which he is interested.
For example, he might wish to determine the average rate of
a radioactive decay or the average number of solar X-rays
lying within a given energy range. A pokerfdl theorem of sta-
‘tistical analysis, called the central limit theorem, states
that nearly all distributions describing such physical phenom-
ena approach the normal distribution as the number of observa-
tions becomes sufficiently large. The frequency function for

the normal distribution is given by

P(x) = __1___ exp _“_Q(__—_Illl_z_

\/Zn g 202

(2.1-1)

where P(xo) dx represents the probability that the variable
x lies within dx of Xy- This function has a mean value of m

and a standard deviation of o, where m and ¢ are defined by

m = J/r x P(x) dx (2.1-2)

- QO

N
n

/ - (x-m)2 P(x) dx (2.1-3)

- QO



and P(x) is obviously normalized so that

1 = P(x) dx (2.1-4)

The normal distribution contains only two parameters, m
and o. If one knows that the phenomena being measured are nor-
mally distributed, then the purpose of an experiment becomes
the determination of m and ¢ at various times or under changing
conditions. Even for non-normal distributions, the mean and
root-mean-square width will be good estimators for the proper-
ties of the actual distribution. For éxample, in an experiment
to determine a counting rate, the best estimate of the mte is
the total number of counts divided by the total time during
which they were accumulated. Similarly, the average energy
of a particle providing a peak in a pulse-height spectrum lying
between channels n and k can be calculated from

= i=n

E = = (2.1-5)
Z N.

i
i=n
where
Ni = number of counts in the ith channel
_ . .th
Ei = equivalent energy of the i channel

-3-



If the rms width of the peak is oy, then the accuracy with
which the mean input energy can be determined is

%1

g = (2.1-6)
VN
where N = number of counts in the peak. 'Thus, repeated mea-

surements of a noisy distribution can improve the accuracy

of the determination of the input signal. " In order for this
technique to be fully effective, gain drifts, offset>changes,
or other purely systemic effects must be cbnstant during the

period of measurement. These concepts can also be generalized

“to include continuous functions. In this case the mean becomes

T
. 1
m = lim o J[. f(t) dt (2.1-7)

T—)oo -T

with a variance given by
02 = lim [ £2(t) dt - m2 (2.1-8)
T » = ’T )

One of the most common distributions present in counting
experiments occurs when one considers the result of multiple

trials of an experiment which may either succeed or fail. For

-4-



example, when tossing coins, the coin may come up heads or
tails. Similarly, a given particle may or may not have an
energy in excess of a predetermined amount. If the probability
of success on one trial is p, then the probability of r suc-
cesses in n trials is given by ‘

n
Py = ( )p" (1-p)"77 | (2.1-9)
T
where
n .
- . . < . - n(n-1)...(n-r+1) _ n!
( ) Binomial coefficient T )77
T

This distribution has a mean value and standard deviation

given by
m = np (2.1-10)
o = Vnp (1-p)

In the limit where n becomes large and the probablllty of
success 1is small but not vanishing, then

- 2
p. > P(x) = L exp —Li—mle (2.1-11)
r YVZmm 2m . :

This 1limit shows that, as implied by the central limit theorem,
the binomial distribution approaches a normal distribution with
a standard deviation equal to the square root of the mean number

-5-



of counts accepted. This fact is the basis for the usual
statement that the statistical error equals the square root

of the number of counts. (Note that when the probability of
success is not small, the exact formula'[z.l-lo] must be used.)
By dividing the standard deviation by the mean, one obtains

the fractional error given by '

9 -
n Nﬁﬁ (2.1-12)

Thus, by accumulating more counts, the experimenter can improve
the accuracy of his measurement.

Another interesting limit of 2.1-9 results when
P = A/n (2.1-13)

so that p + 0 as n » «, In this case the binomial distribution
approaches the Poisson distribution, given by

AY

P = & e (2.1-14)
with a mean value of A and a standard deviation of VA.

ThisAdistribution.results when one considers the probabil-
ity that one or more random pulses occur in a given time inter-
val immediately following another pulse. 1In this case the
parameter ) becomes Rt, where R is the mean counting rate and
t is the measuring interval. The parameter r is the number of *
pulses in the interval, and the probability P becomes

(Rt)T  -Rt

Pr = -'—"ﬂ—- e . (2.1'15)



The probability that the first pulse occurs at t is then

1-P = 1l-e (2.1-16)

The probability that the first pulse occurs at a time t
within dt then results from differentiating 2.1-16,

P(t)dt = Re Rtat (2.1-17)

Several applications of the above general principles
will be given in the following sections. The problem for
the instrument designer is then to choose the parameters of
his system so as to prevent these statistical effects from
unnecessarily contributing to measurement errors.

2.1.1 Rounding Errors

Often digital data compression techniques are
applied to reduce unnecessary use of limited data transmis-
sion facilities. When such techniques are used, rounding
errors occur. The addition of these errors to over-all system

accuracy can be calculated as follows.

The distribution that describes a rounding error

is the rectangular distribution defined by

1/C - C/2 < x < C/2
S P(x) = (2.1.1-1)

0 otherwise

where C is the total resolution of the digital system. The .
mean of P(x) is

m = J/h xP(x) dx = 0 (2.1.1-2)

,4-%



and thus one should take the center of the interval as the
best estimate. The error given by '

-\
P .

- x2P(x)dx = —CS_ (2.1.1-3)
. / R

- O

should be added to other system errors as the square root of
the sum of-the squares. '

2.2 Errors from Variable Counting Rates

Because the percentage error decreases with an increas-
ing number of counts (see equation 2.1-12), the experimenter
often will choose to accumulate as many counts as possible. If
the measuring time is limited, then high counting rates may re-
sult. These high rates can cause errors in addition to those
discussed in'Section 2.1, because of dead-time or amplitude
shifts in the signal processing system. A poorly designed sig-

nal processing system can unnecessarily compound these errors.

Before embarking on a detailed analysis of rate-dependent
effects on a linear analyzer system, we wish to remark that
poorly designed systems can have non-linearities thatbsignifi-
cantly increase the purely statistical errors. For example,
if pulse amplifiers do not have sufficient dynamic range and
linearity, base-line shifts occurring at(high rates can pro-
duce gain changes(z). The need for good linearity then not
only becomes necessary for ease of data analysis, but also is
necessary to eliminate rate-dependent géin'spifts. Such 1lin-

earity usually can be achieved by the use of sufficient negative

(2) Fairstein and Hahn, Nucleonics 23, (July, September, Novem-
ber 1965 and January, March 1966).

-8-
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feedback and by intelligent design of circuits handling
large signals. This sophistication is also required to pro-

vide independence of temperature and aging of active elements.

A typical pulse-height analyzer system is shown in

Figure 2.2-1. Pulses from a particle detector enter an ampli-
fier cqntainihg pulse-shaping elements. The amplifier output
signal then passes through a linear gate into an analog-to-
digital converter. For this analysis we will assume that
these latter circuits are direct-coupled and fast enough so
that all pulse shaping is effectively performed before the
linear gate. The gate is opened and closed in response to

coincidence or busy signals generated in external logic cir-
cuits.

Experiments in which such pulse-height analyzers are
-used typically require the measurement of pulse-height dis-
tributions for particular events in the presence of a random
background of uninteresting pulses. The desired events are
often selected by coincidence 1ogic or by the presence of a
distinguishing feature in the pulse-height spectrum, such as
a peak. Not only may the background make the selection of the
desired events difficult, but it may also distort their pulse-
height spectrum. This distortion may appear both as a varia-
tion in the average measured amplitude for the desired events
and as a smearing of sharp features, such as peaks, in the
pulse-height spectrum. These effects result from the fact
that at high rates an appreciable probability exists that the
sum of two or more pulses may be analyzed concurrently, so
that each event cannot be treated as a separate entity. The
presence of capacitative coupling compounds this problem,
because it may be possible to supply an average charge to the

-9-
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coupling capacitor, resulting in the shift of a critical base-
line voltage.

We will consider two modes of control of the linear gate
which result in significantly different statistical errors.
In the first mode, the events of interest are selected from a
random background by external coincidence logic or by the fact
that the signal of interest has a very much larger amplitude
than the background. The linear gate remains constantly closed
except when the interesting event occurs. In the second mode,
the gate remains constantly open, except during busy periods
for the analyzer, and events are analyzed on a first-come,
first-served basis.

2.2.1 Coincidence-Gated System

In a coincidence-gated system a typical problem is
to measure the amplitude produced by a particular event selected

by external means. If there is no correlation between the times

that the gate is opened and the background events, then the back-

ground pulses are being randomly sampled. If the maximum varia-
tion of the signal peak lies within the linear region of analy-
zer operation and does not overlap any additional signal peaks,
then the best estimate of a given peak is found by calculating
the mean channel number (or equivalent input energy) for events
in the peak. Similarly, the peak width can be measured by cal-
culating the root-mean-square value. Both these quantities

can vary with increasing counting rate, and this variation can
be estimated as follows:

Let the amplifier pulse shaping be independent of
amplitude so that the contribution to the amplifier output level
(Vl) from the ith pulse at a time t is:

V.. = Vo'

1i ; £(t-t)) (2.2.1-1)

-11-
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where

Voi = Dpeak value of the ith pulse

f = pulse-shape function normalized to a value
of one at the peak :

t, = time of arrival of the ith particle, ignoring

any pure delay effects

If particles began arriving at the detector at a time T1 and

N1 particles have arrived between time T1 and time zero, with
N2 particles between time zero and time t, thenthe total out-
put voltage at a time t becomes:

N N, (t)
vi(t) = Zl Vo £(t-t.) + Z Vs f(t-ti) - (2.2.1-2)

i=1 i=N1+1

If the linear gate opens occasionally at random times start-
ing at time zero, then an average peak shift given by the aver-

age value of Vl(t) occurs. This average can be calculated
from

2
V, = lin - / v, (t) dt (2.2.1-3)

Substituting from equation 2.2.1-2 for Vl(t)’ one obtains

Ny T,
- 13 1 -
V, = 1lim T Z voi] CE(t-ty)dt
T, > .
i=1 0

2
(2.2.1-4)
N2 (T3) T,
+ Vs / £(t-t,)dt
.i=N1+l 0
_12_
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The integral can be evaluated as follows:

T, | | T,-t. |

1
J/‘ £(t-t;)dt J[. f(t') dt* (2.2.1-5)
( 0

0

where
' = -
t .t ti
and
f(t') = 0 for t' < 0

In the 1limit that T2 approaches infinity and if the integral

converges to Kl’ then

T2 -
1im f
T > e f(t-ti)dt = f(t')dt' = K1 (2.2.1-6)

2 Jo

0

Because the integral in the limit is independent of t., it can
be factored out of equation 2.2.1-4 leaving

N, (T,)
- . 1
V, = K, lin T 2{: Vs (2.2.1-7)
Tyoe i=N +1
-13_



PRI [Py

v PP

pos

The average value of the peak amplitude of the
background spectrum can be written as

r'NZ (Tz) v \
2: oi
- _ i=N1+1 | .
Vo = lim < (2.2.1-8)
T,»= | No(Tp) = Ny

If the pulses arrive at an average rate R, then on the average

NZ(TZ)'- N1 = RT2 (2.2.1-9)
and equation 2.2.1-7 becomes
V, = K, RV (2.2.1-10)

Notice that K1 can be determined directly_from
the Fourier transform of f(t). This transform is given by

F(ju) = 4//~ £(t) e Jot gt ‘ : (2.2.1-11a)

- 00

with an inverse transform of

©

f(t) = ;% J/ﬂ F(jw) eJut 4, (2.2.1-11b)

-14-
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1 . jwt
= 73 / / F(jw) el " dudt
0 0 P
(2.2.1-12)

Inverting the order of integration and remembering that

[ -3

J/F eIt gt = 24 s (w) (2.2.1-13)

-0

Then

K, = F(0) ' (2.2.1-14)

Similarly one can calculate the root-mean-square

variation of V1 from the above mean. The variance is given by

o2 = vV, (0)-v))? (2.2.1-15)
Performing the squaring and averaging operations, one obtains

o2 = V,Z(0) - VIZ (2.2.1-16)

~-15-



Substituting for Vl(t) from equation 2.2.1-2 and squaring,
N,(t) N, (t)
2 = ) - - -
Vie(t) }: E: Vi Voj f(t ti) f(t,tj) (2.2.1-17)
i=1 j=1

Again averaging over a time period from zero to T2 and letting
T, approach infinity,

v 2 = lim 1 T2 NZ(TZ) ) A
1 TZ }: Voi Voj f(t-ti)f(t—tj)dt
‘ Tz > . -
, 0 1,j=1
(2.2.1-18)
Arranging terms,

N, (T3) rTZ |
| V.2 = i ————-1 : - -
| V1 lim Tz Z VOi VOJ. / f(t ti) f(t tj)dt
1, v J
i,j=1 0

(2.2.1-19)

Recognizing that f(t) vanishes for negative times and separat-

ing the cross-terms from the squared terms,

(T,)
g‘~z T, v
V,2 = lim - ;ig V, ;2 J/” £2(t')dt"
T > © 2
2 i=N;+1 o
»+ lim —T—? Z 2 VOi VOj / f(t')f(t'+ti‘tj)dt'
T, +
2 . £
1,J=N1+1 -
: -16- (2.2.1-20)

j>i



The above integrals are autocorrelation integrals and obey
several well-known 1aws(3). For example, a simple relation-
ship exists between the integral and the Fourier transform

F(jw) of the pulse response.

©o

: ’ 1 . -jot. .
¢(tij) / f£(t) f(t+tij)dt = ‘2"1‘;"/ IF(J“’)IZ e J¥ ij dw

"

(2.2.1-21)

where

{This result can be simply proved by substituting the defini-
tion of F(jw) from equation 2.2.1-11, integrating over t applying
equation 2.2.1-13 and using the fact that F(-ju) = F*(jw).]

In the limit of infinite TZ’ equation 2.2.1-20 becomes

N, (T,)

v - 5 . 1
V1 RK2 V0 + lim Tz zg: ZVOi VOj ¢ (tij)

Tpre i,j=N +1

3>
(2.2.1-22)
where
KZ = ¢(0) =J/- £2(t)dt = Zﬁ' v/r |F(juw)|? dw
0 -

(3) Y. W. Lee, Statistical Theory of Communication, (John
Wiley and Sons, Inc., New York).
-17-
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The second term of equation 2.2.1-22 can be written as

. N, (T,) N, (T,)
1im TS 2V s j{: Voj¢(tij) © 0 (2.2.1-23)
T2 > . .
i=N1+1- j=1+1

In the limit of infinite T,, many values of t.. and V,; appear,
allowing the second factor in 2.2.1-23 to be simplified by
averaging over tij and Voj' Applying the same techniques

used in simplifying 2.2.1-4, one obtains

N, (T,) w
1im ZZJ V0j¢(tij) = VR ,/’ ¢(tij) dtij (2.2.1-24)
T > . 0

2 j=1+1

Replacing ¢(tij) by its Fourier transform given in 2.2.1-21,
interchanging the order of integrations over tss and w, and
using the delta-function relation of 2.2.1-13, then

N, (Tp) V_R|F(0) ]2 ~
lim > 6(t..) = 5 (2.2.1-25)
T -» o S

j=i+1

Substituting this expression in equation 2.2.1-23 and remember-

ing that F(0) is real and equal to Kl’

—_— — 2
2 = 2 2 - 2 (2.2.1‘26)
v, RK, V_Z + (RV _K;) RK,V 2 + ¥

-18-
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and the variance becomes

02 = RK

T 7
2 Vo

(2.2.1-27)
The results given in equations 2.2.1-10 and 2.2.1-27 are
special cases of Campbell's theorem(4).

The above analysis is important in determining
the optimal pulse shaping for an analyzer system operating
at high counting rates. The average peak shift should be
made to vanish by choosing f(t) such that Kl is zero. This
requirement is equivalent to choosing a wave shape with a
vanishing Fourier transform at zero frequency. Thus, if RC
pulse shaping is used and if the time dependence of the detec-
tor signal can be approximated by a delta-function, then at

least two differentiating time constants are required - that
is:

jwt,C _ ‘
F(juw) = - ! : (2.2.1-28)
(I+jwty) (1+jwt,)

This function obviously satisfies F(0) = 0, so that K; also
vanishes and no shifts of_average peak position should occur
in a well-designed, linear system.

‘The reduction of peak spreading requires several
considerations. Obviously, the pulse width should be as short
as possible, limited by the detector output pulse width, avail-
able circuit elements and system power constraints. Notice

‘that in evaluating the limit of infinite Tz,,the period during

(4) S. 0. Rice, '"Mathematical Analysis of Random Noise'" from
Selected Papers on Noise and Stochastic Processes, edited
by N. Wax (Dover Publications, Inc., New York, 1954).
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which averaging was performed had to be long compared to any
variations in f(t). If the count rate is also variable be-
cause>of a pulsed particle source or a rotating spacecraft,

no time constants in f(t) of the arder of the time for appre-
ciable rate variations should be present. Otherwise, the
averaging technique performed above will not be valid, result-
ing in unexpected peak shifts and increased line widths(4).
Thus, when RC pulse shaping is used, the optimal system re-
quires that all time constants be roughly equai‘and short

compared to the average spacing between pulses.

If the ultimate is required in negligible effects .

at high rates, "inspection'" circuits are often employed. Such

a circuit allows the linear gate to open only when no back-

ground signal is present at the input. In this way peak smear-

ing is reduced at the expense of increased dead time. Again
short time constants are required to prevent pile-up and base-
line shifts which could cause large and unnecessary increases
in dead time.

As an example of the above fechniques, consider
the double-differentiated, double-integrated function given
in Laplace transform by

F(p) = BT 1 1 (2.2.1-29)
(1+px)*| | 0.131

(4) Rice, Loc. Cit.
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with an inverse transform of

o - (LB e [

0.786

, (2.2.1-30)

which is normalized to a value of unity at the pak. This
wave-shape provides moderate independence of detector or
amplifier open-loop rise times, while still being easy to
mechanize. Also for many applications nearly optimal noise

performance can be achieved by a proper choice of the shaping
time constant t. ' '

The Fourier transform obviously vanishes at zero
frequency so that K1 = 0, and no shifts of the mean peak posi-
tions should occur. The peak broadening can be calculated
from equation 2.2.1-27:

oc

Q
[

|[F(jw) |2 doe - (2.2.1-31)

An estimate of the order of magnitude of these
peak broadening effects can be generated by considering a
256 channel analyzer operating at an average- rate of 10"
counts/second. If the rms value of the background were 20%
of the signal peak, then, for t = 1 us, the rms peak broaden-

ing would be 2.7%, or 6.9 channels, for a signal peak in
channel 255.
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A wave-shape often used for high counting rate
systems is the ''double delay-line clipped" function, given
by

[ v 0 <t <1

V(t) = ¢ -V T <t < 27 (2.2.1-32)

0 otherwise

This function also has a zero mean and a standard deviation
given by

o = 1.41~/V 2 [Rre (2.2.1-33)
A O-\,’

According to these criteria, the pulse shapes of
equations 2.2.1-30 and 2.2.1-32 are nearly equivalent. The
double delay-line clipped technique is not recommended for ‘
spacecraft use because of problems involving size, temperaturé

stability and ringing of delay lines.

2.2.2 Open-Gate System

As the average time between gate openings approaches
the analyzer dead time or if the gate remains continually open
except during an analysis period, the mmputation of the mean
shift given in the previous section breaks down. Because of
the methods of construction of most analyzers and because of
fundamental limitations in the data analysis, not all portions
of the input pulse can be treated identically in calculating

-22-



the mean peak shift. This statistical bias will result in
a shift in the mean value of a portion of the pulse-height

spectrum, even though the average pulse amplitude vanishes.

Most pulse-height analyzers use some form of
peak detection to begin the analysis and aétually measure the
peak value of the pulse. A dead time then results during
which the analyzer processes the event.  For analyzers employ-
ing the capacitive-rundown technique, this dead time is roughly
proportional to the input amplitude. For binary-search or
stacked-discriminator analyzers, the dead time is nearly in-
dependent of the input pulse height. ‘

This dead time results in the loss of an event
which follows an analyzed event in a time less than the dead
time. The probability that a particle actually is emitted
during this period results from the analysis of the Poisson
distribution. From equation 2.1-15, the probability that no
particles are lost becomes

P0 = exp (-RT) (2.2.2-1)
where

R = average rate

T = dead time

The average number of lost particles per discriminator trig-
gering is given by

©o

Noost = Z rP_(T) = m(T) = RT  (2.2.2-2)

r=1

z -
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Although this dead-time loss may be large, accur-
ate data corrections can be made if the dead time itself is
well known. Such corrections are complicated if the dead time
is a function of the amplitude of the triggering pulse, because
then both the pulse-height spectrum and thézverage counting
rate must be included in generating a rate correction. If
the dead time is principally determined by a discriminator
pulse width and if this pulse width is independent of the rate
and of the triggering amplitude, then only the average rate of
discriminator triggering (R') need be known. This rate can

then be used to find the true average rate from

R!
R = 'i———_'——R,—T (2.2.2'3)

In order to reduce the dependence of the dead
time on the pulse-height spectrum, the amplifier pulse width
must be considerably less than that of the discriminator. Also,
the discriminator threshold should rapidly recover to its

nominal value after the output returns to its quiescent state.

The usual capacitive-rundown analyzer does not
satisfy the requirement that the dead time is independent of
the triggering amplitude. However, an estimate of dead-time
losses can often be made by using an average dead time produced
by the average event in the pulse-height spectrum.

In addition to causing events to be lost, this
dead time contributes to statistical biases producing peak
shifts. These biases primarily result from slowly varying
"tails" on the amplifier output pulses.
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The typical amplifier-analyzer system usually
possesses both primary and secondary pulse shaping networks(z).
The primary networks principally determine the pulse shape
and amplitude for short times and result in a transient re-
sponse which is rapidly varying with large amplitudes. This
network provides most of the bandpass shaping required for
proper analyzer operation'and noise performance. Often secon-
dary pulse-shaping networks are also present caused by capaci-
tive couplings between amplifier stages. These time constants
generally produce slowly varying signals with amplitudes for short
times small compared to those from the primary networks. How-
ever, the large amplitude primary transient rapidly decays, so
that for longer times the slowly varying secondary network
response dominates. ‘

These considerations motivate the division of the

amplifier output pulse into two time regions such that

f(t) = fl(t) + fz(t) (2.2.2-4)

where fl(t) is rapidly varying and contains the pulse-height
information, and fz(t)'is slowly varying and results from
secondary capacitive couplings. Included in fl(t) are the
effects of the primary pulse-shaping networks, and the ampli- -
tude of fl(t) for short times is usually much larger- than that
of fz(t). Typically fl(t) lasts for times very short compared
to the time required to analyze an event, while fz(t) lasts
for times comparable to or greater than this analysis time.

In the analysis of Section 2.2.1, the response of
the analyzer and data analysis to f (t) and to f (t) was assumed

(2) Fairstein and Hahn, Loc. Cit.
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identical when these signals resulted from background events.
For high rates of analysis and for an open-gate ‘system, this
assumption fails to be valid for several reasons.

In the open-gate system it is usually necessary
to select events of interest by the poSitioh and shape of
their pulse-height spectrum. Several interesting types of
events, together with an uninteresting background, may be pre-
sent in the same pulse-height spectrum. The mean value of a
portion of the spectrum can no longer be determined by averag-
ing over the entire spectrum, as implied in the analysis of
Section 2.2.1, because of the distorting effects from the other
events. These events are no longer excluded from the spectrum
by external coincidence logic, and the problem becomes more |
complicated than just calculating the accidental coincidence
between background and interesting events.

Furthermore, the first-come, first-served nature
of the analyzer complicates the nature of the pile-up of the
positive portion of fl(t). (For definiteness, the peaks of
the pulses being analyzed are assumed to be positive.) Most
analyzers detect the change in sign of the slope of the mput
pulse and measure the value of the concurrent maximum. Almost
immediately after this maximum is detected, the gate is closed
and further pulses are excluded until the analyzer is finished
processing the event. Therefore, when two pulses add with
relative timing such as not to change the peak Value; the :
analyzer will not generate a distorted output even though the
average value of the positive portion may change. For example,
a pulse just following a detected pulse at a-time greater than
that required for gate closure will not effect the analysis of
the first pulse. Because the typical analyzer has a dead time
long compared to the duration of fl(f) gnd because the first

~-26-
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pulse to produce a maximum is always analyzed, except when the
analyzer happens to be busy with a previous event, it is im-
probable that the portions of f;(t) following the maximum con-
tribute to spectral distortions.

In addition, unless very high rates are present,
accidental pile-up of the rapidly varying portions of the
amplifier pulse is improbable because of the small width of
these pulses. When such pile-up does occur, the resulting
sum is usually very different from the value of either pulse
alone because the amplitudes in fl(t) are of the same ordgr
as the maximum. Pile-up of these pulses then results in errors
approaching a factor of two(z), and often results in an analy-
sis which is excluded as being outside the amplitude range of
interest.

Therefore, if one selects a narrow portion of the
pulse-height spectrum and performs an average over this portion
in order to determine, say, the energy produced by some process
of interest, then the above arguments imply that pile-up effects
resulting from the primary pulse shaping will be quite differ-
ent from those calculated from a simple average of fl(t)' In
fact practically all of f,(t) for times larger than the time
for the maximum will contribute negligibly to spectral dis-
tortions. The contribution of the early parts of fl(t) depend
strongly on the particular pulse shape and on the method of
data analysis. Clearly the probability of finding just the
correct portion of fl(t) to shift the maximum significantly
without shifting it completely out of the range of interest will
be small, unless the average spacing between pulses approaches
the width of fl(t). Therefore, in the following analysis of
peak shifts only the pile-up of the tails will be considered.

(2) Fairstein and Hahn, Loc. Cit.
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The procedure for calculating the tail pile-up
is as follows. Define t = 0 as the time of arrival of a
pulse analyzed by the system. The gate then closes from t = 0
to t = T, where T is the analyzer dead time. (The time from
the pulse arrival to the closing of the gate has been assumed
small compared to the dead time, and these small differences
have been neglected.) The effect of tail pile up at a time t,
where t > T, will be found by averaging over all possible
cases. Notice that the fact that a pulse was analyzed at
t=20 imp}ies that no pulses occurred in the interval (0, -T),
unless the analyzer was busy during this interval. The prb-
bability that the gate was closed during (0, -T) will be neglec-
ted in this analysis. This approximation is valid if the
average time between gate closures is small compared to the
gate width. For rapidly decaying pulses this approximation
becomes even more valid because of the decay of effects during
(0, -T) in the interval (0, T). For the purpose of simplicity,
an average over pulse amplitude and dead time is implied so that
all pulses can be considered to have the same amplitude and
dead time.

Consider Figure 2.2.2-1, which illustrates the
effect of n + 1 pulses in the interval (0, T) and m pulses in
the interfal (-T, -«) on the base line at t, where t > T, If
a pulse were to arrive at time t, then the baseline shift at
this time would be

n m
Em(t,tye ety sy ees) = Z £(t-t;)+ ) £(t+s;) (2.2.2-5)
: i=0 j=1
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We then average over all times of occurance of the next analyzed
pulse to obtain

?hm(tl --tn,sl---sm) =J/’ P(t-tn) fnm (t) dt (2.2.2-6)
T
where P(t-tn) dt = probability that the next pulse occurs

at t within dt when the last pulse occurred at t

If we also average over the ty and the s,

w T T T e s S n m

_ mofT2 N
o[ L[ L[ e

T 0 t1 tn_1 T T T i=0 j=1

n m
X igl P(t;-t; ) jgl P(sj-sj_l) P(t-t )
X 'dsl---dsm dtn--.dtldt o (2.2.2-7)
where to = 0
S = T
o
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From eqﬁation 2.1-17 for the Poisson distribution and from the
fact that no pulses occur in the interval (0, -T), then

P(t1 - tl-l) = R exp -R(ti - ti-l) (2.2.2-8)
P - S. = R exp -R(s. - s.
(s5 - s5.9) P -R(sy 5-1)
where
R = the average rate of pulses.

The above product of probabilities then reduces to

Rn+m+1

so that T becomes
nm

© T T - T . '
- +m+ a f m n
fnm = er m 1/ / -/t ..f J/ -j'/ ..j’ [} f(t-t. )+ f(t+sJ)_i

1=0

x exp -R (t+s,=T) dsy---ds, dt ...dt) dt

-31-
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m

-
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In order to average over all values of n and m, we must allow
Sy to extend into the infinite past and also sum over all

possible numbers of pulses in the interval (0, T). Thus,

m > o

f = 1inm f (2.2.2-11)
E nm
n=0

For the integration and summation over i, the

only dependence on the sj is through the exponential term,
which becomes ’ .

o S S
m 2 :
Rm jf f .../ exp -R (Sm-T) dsl . e dsm
T

T T

o - -1
R(s_ -T) n
= R™1 (RCsq j exp -R(s, -T) ds_
m-1!
T
= 1 - _ (2.2.2-11)

Similarly the summation and integration over the j terms can
be simplified by factoring out the integral over t;, which
becomes

~T T T
f / ...j/- dtn e dtl=
0 tl tn-1

-32-
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The integral then is given by

e [ ]

X exp -Rt dtn R dt1 dt
r =L |
+Rn+m+1 eXP Rt~/ vjr ...v/ t—ﬁf f(t-s ﬁ
j
J =
| T T T T LIl
X exp -R(t+sm) dsl---dsm dt (2.2.2-13)

If one replaces f(t) by its Fourier integral transform, given
in equation 2.2.1-11b, then

r-m
f(t-ti) = 2117 / F(jw) exp {jw(t'ti)} dw

-

(2.2.2-14)
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and the sum over i can be written

T n ~!
J/’ J/ﬂ J/- 1+ }Z exp-juty! dt ---dt; du
4 J ,

n+1 o . T[nT T nxl “
R exp -RT F(ju)exp juT ... 1+ ). exp-jut,|dt .. .dtydo
27 R - juw ,/ i=1 {j n
0 Tty t

Tan+1exp-RT _F(jw) exp juT duw
2mn! R-jw

- CO

JwT r
Rexp-RT RF(Jw f' 1 ['“ 1 ns1 v '
2: exp-t, dt ...dt; de
2n (- Jm) R-juw J / JO &1 i n

0

(2.2.2-15)
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]
where the ty variables were changed to t, given by

It can be shown that

y X4 X, nsl 11 )
ce Y, exp oX; dX;---dX = Y (e¥-1)
0 0 0 i=1 a(n-1)!

(2.2.2-16)

(This relation can be proved by mathematical induction as
follows:

Assume that

*n %2 n-1 X “’2-[exp (aX )-1]
‘o L. exp aX., dX,---dX_ . = D n

a(n-2)!

(2.2.2-17)

-35-
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‘ Then one needs to prove that the above also holds for the
addition of one more variable so that the integration is also

carried out over Xn’ that is

fxn+1 Xa X, n-1
/ / exp aX  + Z exp oX; | dX;...dX _; dX_
0 0 0 i=1 -
| X n-1 X n-2
n+l n+l aX
‘ =/ X exp (eX )dX_ +/’ X (e**n -1) .
‘ (n-1) a (n-2)! n
| 0 0
n-1
X exp oX
= _n+l n+l exp (o X ) dX
| o (n- 1y o (n- 2)' n
| 0
X
n+l .,n-2 n-1
. Xn exp aXn ax ) Xn+1
a« (n-2! n a(n-1)!
0
n-1
- Xn+1 '
a(n-ayr (exp oXp,-1) | , - (2.2.2-17)

The relation is trivially proved for n = 1, which completes

the induction.)
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Substituting equation 2.2.2-16 into equation 2.2.2-15
and realizing that the proof of 2.2.2-15 does not depend on the

order of integration, then the sum over i becomes:

0

(RT)™ exp -RT RF (ju) exp juT 4
2un! R-juw

- 00

o

+(RT)n-1 exp -RT R2 F(jw) [QEP ij-l] do
27 (n-1! ju (R-jw)

- 00

n 1 (2.2.2-18)

If the sum over n shown in equation 2.2.2-11 is also performed

and recognizing that

©o

_ .
exp RT = EE £§$l - (2.2.2-19)
i=0

Then the sum over i becomes

" _
R .F_(_Jw_) i (1 + R ) exp jwT -_B._ duw
27 R-jw L jw jw

(2.2.2-20)
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This integral is most easily performed as.a contour integral
given by

=
'
[a\

=
o0
1
VamnY
[
| —
(=]
+
N
o=
a
>~
ke
[ ]
-]
o

- dz  (2.2.2-21)

where the closed contour C includes theimaginary axis (-j«,j«)
and an infinite semi-circle surrounding the negative half-
plane. Notice that the integral vanishes on the semi-circle
so that the value of the integral along the imaginary axis
(eq. 2.2.2-20) just equals 2nj times the sum of the residues
at poles in the negative half-plane. (This contour excludes
the pole at Z = R and, unless F(Z) has a pole at the origin,
the 1imit as Z - 0 shows that the remainder of the expression

is finite there. Thus, the only relevant poles are those of

F(Z2).)

The sum over j can be written as

oo ) s! . S'v ] ] \
(RD)™ exp -RT [ / [ . [ Zi“ )I:n: f(__-lt M zT‘j
- 27 n! —/ o L 21 R | /J

0 0 0 0

x exp - (t'+s') dsj...ds! dt' (2.2.2-22)
where
t' = R(t-T)
s! = R(s.-T
j (s5-T)
-38_



Performing the sum over n and substituting the Fourier trans-

form for f(t), one obtains

) re
__1_— F(jw) exp ijT!-f exp -t! ‘1 - l_(_"\_%l dt'-]
2w / Rl
7 » 0
® Sl;l ér m i )
’ - jus
X v/f'/i-;/r 12“ €exp ———l—j exp —s& dsi---ds& do
00 To Il

(2.2.2-23)

Applying the relation given in equation 2.2.2-16, then the

above term becomes

R [ E(ju) exp ‘J;wZT { 1_w - -1“ do (2.2.2-24)
2w ju (1-jg (1 - %?) J

Taking the 1limit of infinite m and using a contour integral with

the same contour as in equation 2.2.2-21, one obtains

_R_ F(2) exp 2T 4, C(2.2.2-25)
27nj (R-2) (Z-¢)

C
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where the Z - € term implies that the pole at the origin should
not be included in the sum of the residues, because the limit

of the term in brackets of equation 2.2.2-24 as w » 0 is finite.
(The quantity e is an infinitesimal real-number which formaily
prevents the denominator of the integrand from vanishing at the

origin but negligibly influences the residues at other poles.)

'Cohbining equations 2.2.2-21 and 2.2.2-25, the total

baseline shift becomes

w

F - ZR:_ygféé) exp IT - ;o lexp 22T -exp ZT + 1| }dz

@]
—

(2.2.2-26)

where C surrounds the negative half-plane, including the imaginary
axis, and Z-¢ implies that a pole exists at the origin only if

F(Z) has a pole there.

According to a fundamental theorém of complex vari-
able theory, the integral of a function satisfying certain general
requirements around a closed cdntpur is related to the "residues"
at the m poles contained within the contour by

m
ﬂg G (z) dz = 21j ) a (2.2.2-27)

C k=1

177



where ak'is the residue at the kEh pole at Z = Zy and, for

a pole of order n, is given by

-1 3
- dnn_l {G(Z)(Z-Zk)n§ 0 (2.2.2-28)

m-10! dz L i
Z"Zk

ax

This theorem can be used to evaluate simply the integral of

equation 2.2.2-26 to obtain

f = R E: ay , (2.2.2-29)
k=1

m

where the ap are given by

1 '
T n JE(2)
- (Z-1 E(z) 7T
“k -1 daztl K {R-Z {exP

R 1
- (exp 2ZT - exp ZT + 1)
: i

7 = Zk (2.2.2-39)

and where Zk is a value of Z producing a pole of order n in

F(Z) and lying in the left half-plane. The summation in equa-
tion 2.2.2-29 is carried out over all m poles of F(Z) lying in
the left half-plane. (F(Z) has a pole of order n at Zy if and

only if lim (Z-2,)™"

Z-~7
finite.)

O™ F(2) is infinite, but lim (z-2)™ F(2) is
kK 222y

-41-
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In order to illustrate the implication of the
above results, consider the case where one secondary time
constant (rs) is used in a system with equal primafy inte-
grating and differentiating time constants (t.). The La-

place transform, normalized to unit peak amplitude, is

Ajpt_t
F(p) = 1" sp (2.2.2-31)
O ee)20rpry) |

where for 7 »>> 1t
S P

Ay = 2.73 (2.2.2-32)

This transform contains a double pole at Z = -1/t _, leading

to fl(t), and a single pole at Z = —1/15, leading to fz(t).
The total baseline shift can be written as

f = Ra; + Ra, (2.2.2-33)
where a, = residue at Z = —1/1p
a, = residue at Z = -1/1s

For the case where the dead time (T) is long compared to 1
so that

T exp (-T/7 ) << 1 (2.2.2-34)
T p

p
exp (-T/rp) << 1

and for t_ << 1_, then
) s

1 +1/2 R
/ WD

Ra; = 2A; (Rrp)2 _ (2.2.2-35)
(1 +,R1p)2
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An exact evaluation of the residue at Z =-l/rs gives

-A Rt Rt ‘
Ra2 = lT P 3 1+expl%I--exp T Rl exp T
(1__2) 1 + Rt s s s 's
T s : .
(2.2.2-36)
which reduces to
At [re2] T _ ) _
Ra2 = 1 S 1+R€ 1 + exp -2T -exp T Ri exp —I]
- 'p s Ts 's s TsJ
(2.2.2-37)

when v << 1,
P S

If T is sufficiently small compared to T, to justify a first

order expansion for the exponentials, then

. . T -

Ra, = -AjRt (1 ?;) (2.2.2-38)
For the case where

Tp = 1 us

L 25 us

= 10,000 counts/second (2.2.2-39)

then

Ra1 = 0.055%

Ra2 = 0.767% (2.2.2-40)

The large contribution to the peak shift resulting
from the secondary differentiating network has long been recog-
nized(z). For this reason, double differentiation is often used
for the primary pulse shaping. If double integration is also
‘used, and if a single secondary differentiation is present, then

the Laplace transform becomes
A, p? 1_t1 2
- 3 S p
F = -
(p) 1= pr)q(l P70 (2.2.2-41)
-4%-

(2) Fairstein and Kahn, Loc. Cit.




A fourth order pole at -1/1p and a first order pole at -1/«
are present in F(Z). The residue at —1/1p under the approxi-

mations given in equation 2.2.2-34 becomes

A3(RT )2
Rla1 2 CEIT (2.2.2-42)
P
" where
A3 = 7.64

and an exact evaluation of the residue at-l/rS gives

A (Rt _)? _ _
Ra2 = 13 5 P 1+exp -%Z - €exp ?I + i%_ exp ?I
(1_?2) (1+RTS) s s s s
S (2.2.2-43)

When ™ is small compared to t, this residue reduces to

2
Ra = AS(RT : l1+ex ;EI-~ ex ;I-+ 1 ex v;11
2 - (1+RTS P T P Tg Rrs P Tsj
(2.2.2-44)

and for T sufficiently small compared to T4 to permit a first

order expansion of the exponentials,

Ra, = A {iE' R 1 -_L | .
2 - 3\Ts 'p D (2.2.2-45)



For the case given in equation 2.2.2-39, then

Ra

1 0.0764%

(2.2.2-46)

Ra2 0.0858%

The reduction by nearly an order of magnitude in Ra, indi-
cates the advantage of the double-differentiated primary

waveform.

Examination of equations 2.2.2-42 and 2.2.2-45
shows that a large value of T is required to minimize tail
pile—up.. Even when the ratio of T4 to ™ is 25:1, the pile-
up from fz(t) is greater than that from fl(t) at rates of 10%
counts/ second. At lower rates the relative effect of T be-
comes even more severe. Thus, values of T in the range of
100 times N appear required for optimal operation of a high-

rate system.

However, such large values of Tg can produce other

adverse effects. For example, peak shifts can occur if the
counting rate changes appreciably during times for which
fz(t) is not neglibibly smallgy)lf T, were made 250 us, then
a time of nearly 1 ms would be requiréd for' the transients

caused by an abrupt rate change to decay. Thus, an analyzer

used with a pulsed particle source, for example, should not

(4) Rice, Loc. Cit. “45-



possess secondary time constants comparable to the period of

the particle burst.

Furthermore, Fairstein(z) has Shown that, if.én
amplifier is overloaded, dead times and pefiods of non-linear
or inaccurate operation occur for times of the order of the
secondary time constant. Thus, an analyzer system operating
with large numbers of overload-producing input signals should
not possess secondary differentiating timé constants'larger

than typical analyzer dead times.

Usually a compromise between tail pile-up and rate
shift or overload dependent effects is made by choosing
secondary time constants in the 25 to 100 us time range. This
choice often isrnot particularly satisfactory if a truly opti-
mum, general purpose system is desired. A more effective
approach appears to be to direct couple the amplifier-analyzer
system so that the only differentiating time éonstants are
those involved in the primary pulse shaping networks. In this
way all pile-up from secondary caupling networks is eliminated,
and recovery from overload or rate changes is determined by . the

fast primary networks.
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3.0 NOISE

Because noise is generated by random fluctuations of the
energy in various noise producing systems, the same basic
statistical analysis applied in Section 2 can be used to
calculate the effect of pulse shaping on amplifier or Aetec-
tor noise sources. The central limit theorem, discussed in
Section 2.1, implies that the distribution in amplifier output
voltage (or current) caused by noise will be approximately
Gaussian. This result follows from the fact that the output
noise signal at any given time is the composite of the ampli-
fier response to input noise impulses during a large number
of previous intervals. Because the number o noise impulses
during one interval is not détermined>by theruﬁber during any
other interval, the result for each interval can be considered
an independent random variable. The central limit theorem says
that the distribution of the sum of many random variables
approaches the normal distribution, with a mean (m) and stan-

dard deviation (o) given by

n : _
m o= ) m. - (3.0-1)
. i
i=1
n n _
62 = 3, o2 + » Yi5 9395 . (3.0-2)
i=1 i,j=1 J J
i=j
where
m,o, = parameters of the distribution of the sum of n
variables, each with mean my and standard deviation o
Yij = correlation coefficient between variables i and j.
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Except for dc systems, the mean value is of no consequence,
since it will be eliminated by any ac couplings. If the mean
exists, it will represent an offset in the system.

The fluctuations in the output signals, related to- the
rms values, are usually defined as the noise signal. The rms
noise voltage (or equivalent input signal) is sometimes speci-
fied directly. More commonly in pulse-height analyzer systems,
the full-width-at-half-maximum of the pulse-height distribution
produced by a noiseless input signal is specified because of
its ease of measurement. The differential pulse- helght spec-
trum for Gaussian noise is given by

: \')
1 o :
P(V) = —— exp - — (3.0-3)
0 \IZN o} 202 :

where P(VO)dV represents the probability that V lies within

dV of VO, and the mean value has been assumed to be zero. From
3.0-3, the full-width-at-half-maximum (FWHM) is related to the
rms value by

FWHM = (2% 21n 2) o = 2.35 o. (3.0-4)

The remaining problem is the calculation of o. From the
rule for adding variances given by equation 3.0-2, and from the
fact that different frequencies can be treated as independent
variables, which follows from the orthogenality of the Fourier

transform, the average square of the output noise voltage

becomes _
. © n n
7 - _1 Y12 §: E: 2
vy 5 |F(juw)| ei e dw
i=1 s J=

0

1#3
-48- (3.0-5)
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where F(juw) Fourier transform of the amplifier

current immpulse response

ei2 = square average of the equivalent current
input noise pér unit bandwidth (in Hertz)
for noise from the iEh source

Yij = correlation coefficient between the:ﬁh

.th .
and j— noise source

Notice that if two noise sources are totally uncorrelated,

Yy = 0, and they add as the sum of the squares. If they are
completely correlated, y = 1, and they add directly. An equa-
tion similar to 3.0-5 can be written using the Fourier trans-
form of the voltage impulse response'and equivalent input
voltage noise sources. The representation used in a given pro-

blem becomes a matter of computational convenience.
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3.1 Typical Noise Sources

The choice of an optimal pulse shape depends upon the
nature of the noise voltages and currents mentioned in Sec-

tion 3.0. Several of these sources will be discussed here.

3.1.1 Resistor Noise

One of the most common sources of noise is thermal
energy in a resistor. For an ideal resistor, this noise is
independent of frequency or current flowing in the resistor
and can be calculated from fundamental theorems involving the

equal partition of energy.

Resistor noise may be expressed in either of two
equivalent ways using either a noise current or a noise voltage
generator. In both cases, the available noise power is constant

as a function of frequency and resistance and is given by:

77
P, = 4kT = B - 7R (3.1.1-1)
: R
where PR = noise power per unit bandwidth (in Hz)
en'z = mean-square noise voltage = 4kTR
per unit bandwidth
T - _ 4kT
i,© = mean-square noise current = —p-
per unit bandwidth
k = Boltzman's constant
T = absolute temperature
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Some resistors may have noise levels considerably
in excess of that calculated by equation 3.1.1-1, which re-
presents a lower limit. High quality metal-film resistors

generally deviate negligibly from the above calculated noise
level.

3.1.2 Shot Noise

A common type of noise, present in most particle
detectors and amplifier elements, is shot noise. For example,
if a leakage current from such sources as photomultiplier dark
current or solid-state detector leakage is present at the ampli-
fier input, statistical variations of this current contribute
to the system noise. This noise arises because current flow
is really the motion of individual electrons. Thus, a current
can be written as

N(T)
i(T) = % q38 (t-t,) (3.1.2-1)
i=1
where q = electronic charge
t. = time of the ith impulse
and on the average
I - H% (3.1.2-2)

Applying the same techniques as in Section 2.2.1, the mean
effect of i on the amplifier output becomes

T N(T)
V, = lim 1 }Z q 8(t-t)£(t-t;)dt
T » o 0 i=1
| (3.1.2-3)




For the usual case where at least one ac coupling is present

F(0) = 0, then Vl vanishes. The variance then becomes

T N(T)

v,2 =

2
; q-
1 1im T
T + o 0

1,j;1

which can be reduced to

N(T)

. 1 . -jut. .
+ 1lim T :E: [F(Gu) |2 e 7% duw
T >

i,j-1
3>

(3.1.2-5)

Because tij is often small compared to the pulse

width, the summation over j can be replaced by an integral.
Thus,

in the limit of infinite T,

the second term of 3.1.2-5
becomes

) £(1) [~ £(t') dt' dt
i=1 J(. JQ ‘

(3.1.2-6)
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The integral over t' is just the mean of f(t), which we have
assumed to vanish. Therefore, the rms output noise voltage
resulting from a current T is

= 1
V2 =szyr %% |F(jw) |2 do (3.1.2-7)
0

resulting in the usual formula that the rms current noise per
unit bandwidth (in hertz) is

'\/1;7 =\/2iq (3.1.2-8)
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3.1.3 Junction-Transistor Noise

The noise sources involved in the typical junc-
tion transistor are basically extensions of the principles
mentioned in the previous two sections. One exception to
this rule is the 1/f noise, which is poorly understood but
probably results from surface leakage effects and from ohmic
leakage across the collector-base junction(s).

A mid-frequency noise mode1 (¢) of a bipolar tran-
sistor is given in Figure 3.1.3-1, which uses the grounded

base configuration. The various noise sources given in this
figure are:

eNe = collector-cur?ent shot noise per unit bandwidth

iNb = base—current shot noise per unit bandwidth

iNc = collector leakage current shot noise per unit
bandwidth

er = base-spreading resistance noise per unit bandwidth

From Section 3.1.2, the shot-noise components per unit bandwidth
are related to the relevant currents by

z - 2 -
eNe 2qI r (3.1.3-1)
« 2 - _
ivp = 2aly (3.1.3-2)
i 2 - -
NG ZqICO (3.1.3 3)

(5) W. H. Fonger, "A Determination of 1/f Noise Sources in Semi-
conductor Diodes and Triodes," Transistors I, RCA Labora-
tories, Princeton, N.J., 1956,

(6) A. G. Di Loreto: Noise Optimization Techniques for Linear
Transistor Amplifiers U.S. Naval Ordnance Test Station,
- China Lake, Calif., Oct. 1963 NAVWEPS Report 8381.
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where:

I = collector current

c
Ib = Dbase éurrent

I.o = collector leakage current
q = charge on the electron

The transistor has the usual relations’ between
the parameters of equations 3.1.3-1, -2, and -3; namely

I
= ¢ -
Ib = 5 : (3.1.3-4)
_ kT —_—
re = dI—C . (3.1.3 5)

where B = grounded-emitter current gain
k = Boltzmann's constant
T = absolute temperature

The noise sources can then be written

—7 _ 2(kT)? )
exo = 2KTr_ = —iafi (3.1.3-6)
i 2 -2l (3.1.3-7)
Nb
B
- _ -
i = 2l (3.1.3-8)
o7 . .3-9
eNb | 4kTrb (3.1 )
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where the usual formula for resistive noise was used in
equation 3.1.3-9.

In addition to the above relations, one must
realize that base and collector shot noise may be highly cor-
related because they both result basically from the same cur-
rent. Thus, the correlation factor y between iNe2 = Eg;T and

T2
isz is often taken to be unity. Moreover, 1/f noise, which

so far has been neglected, adds directly to eNe? SO that a

component in addition to pure shot noise exists for this
generator.

3.1.4 Field—Effect Transistor Noise

A noise equivalent circuit for a field-effect

. transistor is shown in Figure 3.1.4-1. For mid-band frequencies

Van der Zie1(7’&has shown that the noise sources are given
approximately by

- 4kT

iy, 2 =z 2qI_ + 2 ¢__? ab 3.1.4-1

Ng Vg " g Y Tgs ( )

s 2 -

ine E 4kTgm a | (3.1.4-2)
where iNg2 = square average noise current per unit

bandwidth resulting from gate leakage
current (Ig).

(7) A. Van der Ziel, "Thermal Noise in Field-Effect Transis-
tors," Proc. IRE, 50, p 1808, August 1962.

(8) A. Van der Ziel, "Gate Noise in Field-Effect Transistors

at Higher Frequencies," Proc. IRE, 51, p 461, March 1963.
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Gate v ‘ Drain

input >~——————e-tf : *“”””“““““”””“""w"‘ﬂTmmmmg§ output
| N v <J>;. '

transconductance

oQ
54
n

drain output resistance

Figure 3.1.4-1: Grounded-Source Equivalent Noise Circuit.
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iNc = square average noise current per unit
bandwidth resulting from thermal channel
noise., '
Cgs = gate-source capacity.
w = angular frequency.
Ig = gate leakage current.
a = coefficient dependent on bias conditions

and s%ggific device. Theoretical optimum
value is of the order of 0.7.

b = coefficient dependent on bias and sbecific
device. Typically(g) b ranges between 0.35
and 0.40.

The result for the gate leakage current noise follows directly
from the analysis of shot noise given in Section 3.1.2. The
thermal channel noise results primarily from the fact that the
channel is resistive. The dependence of the gate noise current
on frequency arises from capacitive coupling to the channel
thermal noise. This noise is correlated to the thermal noise
source such that |

IE 37 = » -
1Ng ine ac\/b 4 kT w Cgs A (3.1.4-3)
¢ = complex correlation coefficient dependent

on bias and specific device. Typically(8
C ranges between 3 0.39 and j 0.42.

The thermal channel noise source is sometimes repre-
sented by a noise voltage generator between the source and ground.

In this representation, the equivalent noise voltage per unit

(7) Van der Ziel, Loc. Cit.
(8) Van der Ziel, Loc. Cit.
-59-
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bandwidth becomes

e = (3.1.4-4)
Ne gn |

The above model fails to be accurate for frequen-
cies below 100 Hz where 1/f noise becomes important. In this

region, the channel noise component rises with decreasing fre-
quency.
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5.2 The Charge-Sensitive Amplifier

One of the severe noise problems in the design of nuclear
pulse amplifiers arises when small signals from solid-state
detectors or from photomultiplier tubes must be amplified.

For reasons beyond the scope of this section, the charge-
sensitive amplifier configuration shown in Figure 3.2-1 is
generally employed. The calculation of the system noise for
such a configuration forms a useful example of the general
principles stated above.

The basic configuration consists of an operational ampli-
fier, followed by additional pulse-shaping networks [B(juw)].
The noise sources at the input represent the total rms equi-
valent noise per unit bandwidth from both amplifier and exter-
nal sources. In the following discussion the amplifier gain
(-A) will be assumed infinitely large so that the transfer
impedance is totally determined by the feedback and input net-
works (Rf, Cf, Rs’ CS). Under this approximation the output

noise voltage caused by input noise current (VZi) becomes:

2 . IB(jw) |2 1.2 R.2 duw
Vai J/f N _f (3.2-1)
0 2n (1 + w2 RE? Ce?)

‘The voltage component is given by

_ r
(Ce+CIReR w 2] iR_+R, |2
w0 ) . s’ f's s f
J/' IBGu)[? ey?{1 + KR, R de

{ s

27 (1 + w2 sz cf2)

(3.2-2)
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Figure 3.2-1: Noise Equivalent Circuit
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Under the usual approximation that

equation 3.2-3 reduces to

o0

dw

s 2 2 2 2 2
V. 2 =d/p IB(ju)[? ey? Re? (Cp + C)? w
2 .
v 21 (1 + w? Rc2 C.2)

Similarly, if a correlation y exists between ex
component of output noise becomes ‘

and 1

(3.2-4)

N? this

, === R +Rf)R / (C+C_IRR m,zl
fm |B(jw)lY eN2 iNz \/1"‘ R +R j g dw
vV, 2= : i
2 | 2 2 2
- : 2n (1 + w® R.% C.%)
0 £t (3.2-5)
Under the approximation given in equation 3.2-3, then
o ] | -
v, 2 "J/’ [B(ju) [2 v/ey? T7 Re? (Cp+C) w do
2c T ) 2 p 2 .2
0 2 (1 + o Re Cf )
(3.2-6)
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If the noise sources eN and iN are approximately inde-
pendent of frequency, the total output noise becomes

2 (o]
V2N2 = Tl iNz /’ IB(jm)IZ dw
ZanZ ) (1+w2112)

e s 2
+ v /eNZ iN2 (Cf + Cs) [ IB(L‘”)L w do
./0 (1+w2T12)

— o [ G2 w2 du _
4 e? (Cp + CY) J/ﬁ (ot (3.2-7)
| o

where
T = Rg

Suppose that the pulse shaping networks are restricted
to simple RC or LR circuits so that B(jw) becomes the product
. 1 jwt .

of terms of the form +—— and Then, we can write

1+jwrt l1+jwt’

) m jwri m+n 1
B(jw) = @I +5— I T Tyw A (3.2-8
i=2 1+JwTi i=m+1 l+JwTi . )

where there are m-1 differentiating networks in B(jw) and n
integrating networks, and 1; = 11 1is reserved for the
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preamplifier. The total system current impulse response then

becomes
: 1 m jwri n 1
F(ju) = I I (3.2-9)
ijf i=1 1+iji i=m+1 1+iji

The pulse shape corresponding to this frequency response can
be obtained from the following contour integral

m-1
£t) Q n f#: p
= n T. !
27C i=1 1 n+m

£ C

ePt dp

(3.2-10)

I (1+pTi)
i=1

where the contour surrounds the negative hélf'plane. The above

expression is based on the assumption that the detector produces

a charge Q during a time short compared to the Ty» SO that

is = Q § (t)

In order to compare various
output noise voltage (eq. 3.2-7)
impulse response (eq. 3.2-10) to
noise energy. The square of the

then bgcomes

(3.2-11)

amplifier configurations, the
is divided by the peak of the
obtain an equivalent input

equivalent input noise energy

(=]

— 1 — w2M=2 g4
E 2 = , i
N . - N
21Q2g, 2(T1,THs T - ) n+m
Q Y 1272 ’ ‘n+m 0 I (1+w2112)
i=1
—_— 2m-1
- 7 T3 . W dw
tyoe? iy (Ce + C) / T
’ Q I (1+w2Ti2)
i=1
+ o2 [ w?™ du (3.2-12)

2
N (Cf * Cs)

./ n+m
0 I (1+w2Ti2)
i=1
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where Q is the energy-to-charge conversion factor of the
detector and where g\ is the maximum value of g(t;r«

The function of g(t) is given by

f' m-1 pt
g(t) = zij jﬁ B__e <p (3.2-13)
| M (1+pt,)
C 45 i

If the noise currents and voltages (5;7, ;;7) do not
depend on the shaping time constants (ri), the equivalent
input noise energy is a completely symmetric function in the
T Therefore, the minimum value of ng will occur when all
the T; are equal. The remainder of the analysis will be re-
stricted to calculating the noise for this optimal case. (The
use of the preamplifier feedback network as one of the primary
pulse-shaping time constants gives less than optimal noise
performance because of the noise produced by Rf. However,
this increase is often negligibly small, so that the problems
at high rates caused by larger secondary differentiators can
be avoided by using Re Cf as one of the primary pulse shaping
networks. Where low noise is the prime Consjderation, Rf is
often made as large as possible.)

For the case where all T; are equal, then

-1 pt
_ 1 pm e dp
g(t) = 773 :7( (1+p1)n+m (3.2-14)
C
-66-
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Changing variables to

Z = prt

(3.2-15)
t' = t/q
then one obtains
m '
T m-1 Zt
g(t') = g(t/x) = f#; Z € n+mdz (3.2-16)
27j (1+2)

C

A similar variable change in the integrals of equation 3.2-12
results in

i 1 — = xZm-Z gy
E = — (i.2 1 —_—
0
: T xaml gy
+ v/ ey? ig? (Cp + C _—
Y N N ( f s) (1+X2)n+m
0
: o 2 o 2m
ey? (Cp +CQ) J/F x“M ax 1 (3.2-17)
+
T (1+X2)n o [ |
0

where hM is the maximum value of

1 g1l gt 4y
h(t') = h(t/1) = (3.2-18
2nj (1+z)n*m ( )
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Notice that hM is not a function of t, which only gives the

general scale factor for time.

The optimum value for 1 is obviously given by the condi-
tion that the iN2 and eN2 components of equation 3,2-17 are

\
/ X2n d\

equal. Thus

opt (C + Ce (3.2-19)
1 sz-zdx
with a corresponding minimum noise energy
e 2 7 7 ( ®
EZ _ g+ T ey iy \ x2m-1 gx.
N ,opt 2n Q2 hy? 1 asnmm
® r e
+ 2 "/‘ x2m-2gx | i X2m dX—WE
+ , +m
L ant mj jo (1exz)
(3.2-20)

The integrals involved in the above two equations are tabulatedcg)

(9) Dwight, "Tables of Integrals and other Mathematical Data,"
(The Macmlllan Co., New York, N.Y.)
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and their evaluation gives

(3.2-21)

(3.2-22)

(3.2-23)

J/r X 1lax  _ (m-1)im-1)!
o (1xz)m . 2(m+n-1)!
2m-2
X dX _ 1
[ W = 7 B (m‘l/z, n+1/2)
® 2m
X daX _ 1
V/r E;:;;;g:ﬁ‘ = 5 B (m+}, n-%)
0
where
B(a,b) = r(a) r(b)
I (a+b)
r(a) = (a-1)! for a = integer
r(a"'l/z) = 1'3'5"'£23’3)(23'1) YTT for a
2’8.
r(a+l) = ar (a)
-69-
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Substituting these values one obtains

Topt (Cg +Cy) (3.2-24)

2 3 2
£) \ey® iy ¥
44

'(CS +C

2, 1)1 (n-1)!
N Opt Q2 th (n+m-l)! (m ) (n )

’[1-3~5---(zm-1)] [1-3-51--(2n-1)]

+ — \ (3.2-25)
2 V(2n-1) (2m-1)
The evaluation of hy, can be aided by observing that
equation 3.2-18 can be written as
m-1 AR
ney = 2 4 e 4L (3.2-26)
2nj dt! (1+2) :
C
The residue at the pole at Z = -1 is easily evaluated to give
dm—l t.n+m-1 e-t' }
h(t') = — : (3.2-27)
ae'™ (n+m-1)! J
where as before t' = t/1. The peak value of h(t') can be

obtained by differentiating equation 3.2-27 again with respect
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to t' and evaluating h
vanishes.

Two cases for the
sidered here - namely,
These cases correspond

single differentiation

hl(t')

M1

The optimum time constant

Topt,l

(t') for the time at which the d&rivative

differentiation networks will be con-
single and double differentiation.

tom =1 and m =

2, respectively. For

one obtains

g -t!
3 (3.2-28)
n -n .
2——§T—— (3.2-29)
nt : (3.2-30)

and noise are given by

(3.2-31)

QZ(n" e™™)2 4wn
[1‘3'§;i-(2n-1)] (3.2-33)
' 2 2n-1



As the value of n is increased (i.e. as more integrating
networks are used), the equivalent noise energy decreases
slowly. The optimum value is produced by letting n approach

infinity. In this case, the pulse response approaches a
Gaussian, given by

lim hl(t') - 1 exp. - LELLElE-! (3.2-34)

n o o 2nwn 2n

This result was proved by Fairstein and Hahn(z),'who recognized
that equation 3.2-28 was formally identical to the Poisson dis-
tribution, which, by the central 1limit theorem, approaches the
normal distribution for infinite n. The value of hM follows

directly from 3.2-34 or from Stirling's approximation for the
factorial, namely

.
. ~ n _-n 1
lim n! = /2w n" e 11 * I } (3.2-35)
n > o
lin b, = 1 | (3.2-36)

L > e 1 V2mn

Applying Stirling's approximation to equation 3.2-33, one
obtains for the minimum noise energy under the assumptions of
simple RC or LR shaping and of a single differentijator

=T :
E ) ) (CS + Cf) j\/ eN 1N Y . k1
N ,MIN 1 Q2 2 2 J{
- ML
(C + C ) e 2 i 2 r
I 2o il 0.5 y + 1.251 (3.2-37)
Q? |

(2) Fairstein and Hahn, Loc. Cit.
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For no correlation the rms noise becomes

| .
— 1.12 —

2 = —_—t 2 3 2
EN,MIN 1 Q “V/(Cs Ce) ey iy (3.

As shown in Section 2, minimizing baseline shifts

2-38)

requires

that at least two differentiating networks be employed. This

fact motivates the following calculation of the noise for the
case of m = 2. In this case the transient response becomes
N _ -t! ‘
hy(tr) = L (mrl-tl) e (3.2-39)
(n+1)!
with a maximum at Tp given by
N=vs A P — A7 ferEe)
hy, = ‘2= (n+1) -y (n+1) e [MFITY DY
(n+1)! J
(3.2-40)
sz = (n+l -/n+l) © (3.2-41)
The optimum time constant and noise become
\ 2
eN2 3
‘ C_ +C 3.2-42
Topt, 2 ( s f) 1?2 n-1 ( )
N
-7%-
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3
"

p2 (Cg + Cg) (n+1 -~/n+1)  (3.2-43)

— - (G + Cg \/ (n+1!)?2

R e (i sy

LY .Wéi'(n+1):2n 1-3:5--.(2n-1)
4mn(n+l) 4 \V2n-1

(3.2-44)

In this case the noise has a minimum at n = 2 and then
increases with increasing n. The limiting transient response
can be found from differentiating equation 3.2-34 to obtain

lim h,(t) = —RZtl  exp - iEllElfJ (3.2-45)

- 2 n \[@nn 2n

with a maximum given by

. 1
1im h = — (3.2-46)
Noroo Mz n -y 2ne

lim T , = (n -/n) < | | (3.2-47)

N>
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Substituting these values in equation 3.2-44 and taking the
limit of infinite n, one obtains for the noise energy for
the differentiated Gaussian

/e 2 1.2
Lin BT N e(Cy + Cp) ey’ iy

: 2
N> Q

enl
"

o=

(CS + Cf)-w/eN% iN2 [1.36Y + 2.9;] (3.2-48)
QZ ,' ‘ J

For no correlation the rms noise becomes

B
1.72 —5 7
2 = =-'& 2 2 -
Ey )2 a j//(cs + Cf) ey’ iy (3.2-49)
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The values of noise and optimum time constant for single
and double differentiation are given in Table I for several
values of n. Notice that the use of double differentiation
increases the rms noise by a factor of 1.2 combared to single
differentiation, if the optimum number of integrating networks
are used for both cases. '

Before leaving this subject, it should be poinfed out
that the restriction to the simpie form for F(jw) given in
equation 3.2-9 is neither unique nor necessary. Although the
Gaussian pulse shape (m=1, n=«) appears optimum for this type
of pulse shaping, other forms involving delay lines can give
better noise performance(z). Furthermore, the Gaussian pulse
shape can be approximated simply with high accuracy if terms
of the form 1 + pt are allowed in the numerator of the trans-

fer function(z’lo).

If a pulse shape averaging to zero in a
short time, such as the double-differentiated waveform, is
required, then the above analysis indicates that the differ-
entiated Gaussian is not the optiﬁum even for the simple pulse
shaping assumed. Double differentiation, double integration,
for example, gives significantly less noise. The optimum
pulse shape satisfying the zero-mean requirement may thus dif-
fer from'the symmetrical waveform used in many advanced ampli-
fiers. The calculation of this optimum is beyond the scope of
this effort. '

(2) Fairstein and Hahn, Loc. Cit.

(10) Blankenship and Nowlin, '"New Concepts in Nuclear Pulse
Amplifier Design,'" IEEE Transactions on Nuclear Science,

NS-13, p 495, June 1966.
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n

Number
of
Integrators

NN

8

A B
Uncorrelated Correlated
square- square-
average average
noise noise

in units in units
of of
o 23 2 / 2 1 D
(CsrCelfey’ iy |(Co*Codyfey iy
Q2 Q2
m=1 m=2 m=1 m=2
1.87 2.04 0.60 0.75
1.46 1.82 0.54 0.78
1.38 1.88 0.53 0.81
1.36 2.04 0.52 0.90
1.25 2.95 0.50 1.36
=7 T 7
E 2 — (CS+Cf) eN lN
N,opt )
Q
_ -1
Q = 4.57 x 10
Q = 5.51 x 10717
TABLE 1:

T0pt

Optimum
time
constant

in

units

of

(CS+Cf} =
N
m=1 |m=2
1.00 [1.73
0.58 ]11.00
0.44 {0.77
0.38 [0.65
0 0
(A + yB)

Noise and Peak Values

T
p

Peak
time
in units
of

,7 C/KeV Silicon detectof

C/KeV Germanium detector

for Optimized Shaping Using Simple Poles
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Peak
value
of
transient
for unit
input

m=2
0.231
0.131
0.0903
0.0593

m=1
0.368
0.272
0.225
0.196
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3.2.1 Field-Effect Transistor Input Stage

Commonly field-effect transistors are used for the
input stage because of their low noise. A typical such ampli-
fier is shown in Figure 3.2.1-1, where the FET noise sources
are shown explicitly. The formulas developed in Section 3.2
cannot be used directly because of the frequency dependence
of the FET noise. However, the following manipulation of the
noise sources allows the final result to be represented in the
form of equations 3.2-1 and 3.2-4.

Assume that the total complex admittance from the .
gate to ground is Ys and that the FET has a transconductance

g, Then the total equivalent squared-average noise current
per unit bandwidth referred to the input becomes

Y )
igT2 = |ing * ing * Ei ive * \/2alyp|? (3.2.1-1)
where
io2 = A4KT squared-average feedback resistor noise
NR R 9 &
f current per unit bandwidth
iy 2 = 4kTag
Nc m

From equation 3.1.4-1 the gate noise current consists of two

components
1gl 2qlg (3.2.1-2)
1.7 - 4KTab (- 4o o (3.2.1-3
gz gm (w gs) ( )

where i is uncorrelated with i and i has the correlation
- oTgl Nc g2
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© e
\\‘
free e A S, » output
\
. l | —
s (l
] =
Re
—
L
AT Ce
Iip i { ‘:} Detector
¢ \\‘i//’
v
- Bias
ILD = detector leakage current
Cs = total source capacitance including the FET input
capacitance and the detector capacitance
A = subsequent gain stages producing negligible noise

Figure 3.2.1-1: Typical FET Amplifier Configuration
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given in equation 3.1.4-3,

be written

where ¢ is the

If

small compared

tributing most

and

[}

The total noise current can then

(3.2.1-4)

give
2
3 I 2
tg2” MNe , Nc
T .23 2 g 2
g2 Nc m
i 7 |y |2

1,7 (- fe|?) » He—=
g2 g 2
m

(3.2.1-5)

complex correlation coefficient..

the real component of YS is neglected as being

to the capacitive component at frequencies con-

of the noise, then

J

2q(Ig + ILD) +

+

(Cg + Cg)

4

KT
Re

2 2
4kT a w (CS+Cf)

Em
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(3.2.1-6)

(3.2.1-7)

2
2|c|yb Cgs . b C_
Cs * Cf (Cs+cf)2J
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For

0.7
0.4

jo.4 (3.2.1-8)

o W
] ]

: 4KT
gT ally = Ip) + g,

-
N
1

s
1 + + e
&m L Cs+cf TCS+Cf) J

+

2 2 ' 2
2.8 KT w2 (C_+Cy) f 0.51 Cp 0.4C 2]

(3.2.1-9)
The amplifier output noise becomes

[}

: i ~% R:? |B(jw)|? duw '
T °f
V.2 = J/- 4 (3.2.1-10)
2N A (1+w2 Tl)z

where T S Rf Cf

This equation becomes formally identical to equétion 3.2-7
with

0.51C_ 0.4C 2
—2 _ 2.8kT gs ) S
ST - 1o s, % Gs
N gn CS+Cf (C5+Cf)
3.2.1-11)
iy? = 2q (I + 1)+ ﬁ%% (3.2.1-12)
. = 0 (3.2.1-13)

e



For most spacecraft applications where coolihg is
impractical, the detector leakage current noise is the dominat-
ing factor inlfgr. The magnitude of Rf is limited to values
of the order of 1 M in order to maintain adequate amplifier and
detector bias stability. Furthermore, the feedback capacitor
,(Cf) cannot be less than about 1 pF because unstable'étray
capacitance would otherwise dominate the amplifier gain. For
such an application, typical values of the quantities of equa-
tions 3.2.1-11 and 3.2.1-12 are given in Table 2 for two cases
of detector leakage current at room temperature and for double
integration with double differentiation. Notice that the pre-
sence of detector leakage current. severely limits resolution
even with theArather large detector capacity (100 pF) assumed.

The calculated resolution is in good agreement with
values actually obtained in practical amplifiers (10’11’12).
Stringent selection of the FET, however, appearé necessary to
obtain theoretical noise performance using the 2N3823. The data
of Blalock(lz) appear to indicate that a 1/f noise component
can be significant at frequencies above 10 KHz in some units.
Improvements in device manufacturing techniques will probably

reduce selection problems in the near future.

Improved resolution can'also be obtained by cool-
ing (11,12) the FET and critical resistors to about -110°C. This
. technique is particularly applicable to y - spectroscopy experi-
ments using cooled germanium detectors. Also, Smith and Cline(ll)
have shown that using several FETs in parallel for the input stage

can reduce noise for high detector capacities.

(10) Blankenship and Nowlin, Loc. Cit.

(11) Smith and Cline, "A Low-Noise Charge Sensitive Preamplifier
for Semiconductor Detectors Using Paralleled Field-Effect
Transistors," IEEE Transactions on Nuclear Science, NS-13
p 468, June 1966.

(12) Blalock, "Wide-Band Low-Noise Charge Sensitive Preamplifier,"
IEEE Transactions on Nuclear Science, NS-13, p 457, June 1966.
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High Detector

Low Detector

Quantity Leakage Leakage
-7 : -10
Detector Leakage 3 x 10 A << 10 A
Current (IDL) |
FET Leakage 10710 5 10710 4
Current (I )
(2N3823)
Transconductance (g ) 4000 umho ’4000 umho
(2N3823)
Feedback Resistor (Rf) 5 x 105 Q 109 Q
Feedback Capacitor(Cf) 1 pF 1 pF
Input Capacitance plus 107 pF 107 pF
Detector Capacitance
for CD = 100 pF
(c,)
2qlg 3.2 x 10727 A2/Hq .2 x 10722 a2/H;
) -26 2
2qIDL 9.6 x 10 A“/Hz 0
T 3.2 x 10 28 A2/n, 6 x 10729 A2/Hq
f
2 3.58 x 10713 A/+/Tz 92 x 1071 a/~/iiz
N . b L
ex? 1.68 x 107° v/yHz .68 x 1070 V/~/Hz
Topt 0.51 us 2.62 gs
. =17 -17
Q (Silicon Detector) 4.57 x10 ~° C/KeV .57 x10 C/KeV
Eop (RMS) 7.51 KeV 3.32 KeV
Eop (FWHM) 17.7 KeV 7.70 KeV
TABLE 2: Typical Solid-State Detector

System Noise Levels
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3.3 Noise Counting Rates

In some applications the amplifier may be connected to
a discriminator with a threshold sufficiently low so that
the probability of its being exceeded by noise pulses 1is
significant. This noise counting rate can severely limit
some low-energy experiments. In this section, the noise
counting rate will be derived based on statistical relations
developed by Rice (4).

Assume that the discriminator is an ideal device in
that it has zero dead time and hysteresis. Then if a
noise signal from an amplifier as shown in the upper curve
of Figure 3.3-1 is applied to the discriminator input, the
discriminator output is given by the lower curve. We wish
to calculate the average number of discriminator transitions
per second.

The noise counting rate is the number of times per
second that the amplifier output voltage exceeds the thresh-
old (D) with a positive slope. Consider the probability dis-
tribution function p(§,n;t1) d§dn, which represents the prob-
ability that the amplifier output voltage Vz(t) has a value
§ within d§ and a slope n within dn at the time tl. 1f Vz(t)
is equal to § at t = ty with a slope n, then a first order
expansion about ty gives

n

V,(t) 5+ 0 (t- t)) (3.3-1)

so that if Vz(t) = D within dt of ty then § and n must satisfy
the inequality ‘

< t, + dt (3.3-2)

(4) Rice, Loc. Cit.
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The condition that the slope be positive reduces this
inequality to '

-ndt < 8§ -D < 0 (3.3-3)
If we integrate over all allowed values of § and n, then

P+(D)dt =J[‘ j( p(§,n;tl).d§dn
0

D-ndt

B

[ np(D,n;ty) dndt (3.3-4)

0

I

where P _(D)dt probability that Vz(t) crosses § =D

with positive slope at t, in dt, and

1
the limit of small dt has been taken
so that p(§,n;tl)zp(D,n;t1) throughout

“the interval (§ = D-ndt, § = D).

If p(D,n;tl) does not depend on time, then P (D) can

be trivially integrated over one second so that the rate R

becomes
R = f np(D,njdn (3.3-5)

0

By the central limit theorem, the distribution of ampli-
tude and derivative are known to be normal, and it can also
be shown that they are independent. Thus, p(D,n) becomes
- D2 nz
‘2004 -2012
p(D,n) = ———— e e (3.3-6)

2“0001
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where 0?2 square-average of V,(t)

av, (t)
012 = square-average of —3F
From the previous section
1 ” . e
oe? = [ lipG) [2[FGe) [2 do  (3.3-7)
27
0

where iT(jw) total noise expressed as a complex input

current

i}

F(juw) Fourier transform of the amplifier trans-

fer impedance

av
Similarly because the Fourier transform of Efg is jwF(jw),
then
1 ) 2 |3 (3 2 . 2
012 = o2 ligGe) |2 [F() 12 do
27

0 (3.3-8)

Substituting equations 3.3-6 into equation 3.3-5, one
obtains for the rate

DZ

01 252
= 0 -
R 270y © (3.3-9)
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If F(jw) has the simple form given in equation 3.2-9
and if the equivalent input noise current can be represented
by equations 3.2-1, 3.2-4 and 3.2-6, then the quantities oy

and o; referred to the input become for equal time constants

2m-2 |
0.02 - EN2 = 1 iN2 T X di(
) szthZ (1+X2)n m
0

e TE (e e oy [ XeMiax
TVEN N f s (1+x2)0*0

)
, o (G G d/ﬁ X2M dx
0

3.3-10
(1+x2)Hm / ( )

¥ —_— 2m
012 = 1 iv2 1 X7 dX d§+
ZﬂTzthMz A (1+X2) m

— X2m+14x
+ Y\/eN iy (Cp + Cs) J/ﬁ EI:;;3n+m
» 0

2 2 «©
. SN (Ce + C5) X 2m*2 gx (3.3-11)

T
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The integrals can be evaluated using equations 3.2-21 to
3.2-23 and

X2MHlax  _ mi(n-2)! (3.3-12)
A (1+x2)7*M 2(n+m-1)! | - A
X2m*2gx 1 | '
f W = 3 B(m + 3/2, n - 3/2) 0 (3.3-13)
0 .

where the infegrals for E§7-and for y diverge forln <-2. In
actual practice these integrals do not diverge even for n = 1
because of amplifier bandwith limitations neglected in the
approximation that A was very large for all frequencies of
interest. However, a significant excess counting rate can
occur when only single integration is used if voltage or

correlation noise is important.

“Equation 3.3-9 can be written

K D2
R = —3_ exp D (3.3-14)
2n1 ZEN2 :
where
D = discrimination level in units of equivalent input
energy
EN2 = square-average eqivalent input noise energy
K; = constant of the order of one dependent on the details

~of the pulse shaping
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Because ENZ has been considered in the previous section, the

only remaining problem is the determination of K3. This con-
stant is given by

-,/"’—'7—7' =7 2
N\/ey? iny2(C+COm! (n-2)! e 2(C+C ¥B(m+3/2,n-3/2)
iyZtB(m+1/2,n-1/2)+ Y N N "'f s W N E s |

(n+m-1)! T
im;zih t ' Z 2
vw/e Iy (Ce+C ) (m-1)!(n-1)! e,?(Ce+C_)2B(m+1/2,n-1/2)
I ZtB(m-1/2,n+1/2)+ M N N 7f 7s SN s
(n+m-1)! » T
(3.3-15) -

Evaluating the B-functions according to equation 3.2-23, one
obtains A

n[1-3-5- - (2m-1)] [1-3-5---(2n-1)]

B(m+1/2,n-1/2
(ne1/2.n-1/2) (m#n-1)! (n-1/2) 2™™

(3.3-16)

n[l-S-S---(Zm-l)}[1-3'5---(2n-1)}€m+1/2:

B(m+3/2,n-3/2)

(m+n-1)! (n-1/2) (n-3/2)2™*R

(3.3-17)

n[l-s-s--'(Zm-l)}fl-3-5---(2n-1)]'
B(m-1/2,n+1/2) S

1

(m+n-1)! (m-1/2) 2™*R

(3.3-18)
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and K32 becomes

iN2 T Y\/;NZ iNZ(Cf+CS)m1(n-2)!2m+n _eNz(Cf+Cs)2(m+l/2)

n-1/z ° w3 (Zm- D [T-3 - (2a-1)] Y eIy (0372 *

K2 = ‘ |
’ i? T Y\/%—Z ‘]T‘F(Cf"'cs)(m'l) ! (n-1)12m+n E_I\;Z—(Cf.;.cs)z
+
m-1/2 * "[1.3...(2m-1ﬂ [1'3°»°(2n-1)] (n-1/2) t
(3.3-19)

Severallspecial cases for K3 are of interest. For example,
for a photomultiplier tube amplifier, current noise resulting
from photomultiplier dark current may complétely dominate. Then

K+ becomes approximately

- m-1/20 _ . [2m-1"
K2 = Vo172 © VT (3.3-20)

When an equal number of integrators and differentiators are

used, K.. equals unity.

3i
Another interesting case occurs when the shaping time con-
stant has been chosen to give minimum equivalent input noise

energy. Then

= (e + e [ A (3.3-21)
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and the rate becomes

K, 12 ) |
R = — = ——  exp | — (3.3-22)
opt P2 57
_ 3
where K4 = 5 \/
The constant K4 can be written as
K2 - 1+ azy (3.3-23)
4 T
1 + a,y
where
4mn-4m+1
'a1 = - (3.3-24)

472(2n-3) (2m-1)

(m-1)!(n-1)!2m*N-2

"2 T ‘n'VQZm-l)(Zn-lj{1-3---(2n-3)][1-3'--(2m-3)]
(3.3-25)

m(Zn-l)a2
a, = (3.3-26)

4n2(n-1)(2m-1)a1

for n > 2.

-92-



I

For vy 0, the noise rate becomes

1 [12 dmn-4m+l T [ o
—_— iexp
zn(cs+cf)'\/ ey? [ (2m-1)(2n-3) | [ZENZ

. »

Ropt (3

| A |

.3-27)

For single differentiation, m = 1 and the'constants in

K42 are given by

o
i

4n-3 .
0.0253 {fﬁjg} (3

n
2, - 0.159(n-1)! 2 3
2n-1 [1-3---(2n-3)] :

n-1} as ' 3

and the noise rate for y = 0 becomes

0.159 iZ [ 4n-3 | [ -D2
Riop = ——— 2 | 2 e (3
] : - |
(C +Cy) e? | 20-3 Lzﬁg?

If n > «» so that Gaussian pulse shaping results, then

0.225 iy -D? s
R > exp
1,o0pt — =7
’ (Cs+Cf) ey ZEN
-93-
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For double differentiation, m = 2 and the constants in

K,? are given by

8n-7\ ' .
0.00844( 2n—3) (3.3-33)

[}
"

0.183(n-1)!2" : )
= , 3.3-34
%2 V’zn-l‘[l-s---(Zn—s)] '

. {2n-3){2n-1} '
a; = 2 {8n-7; % n-l) a, (3.3-35)
so that the rate for no correlation becomes
0.0918 /17 ” 8n-7 { -p2 7 ( |
R ——. J oA —1 exn: 3 1-36)
2 t / H & ¢
ST e Y &7 [Gnen] 2R

For the case where two integrators are also used, then

0.275 i? [ -Dp2 1

R = — —— exp . ! (3.3-37)
22 Opt - - S Vi }
’ (Cs*Ce) °N L2EN"

Various values of the above quantities are given in
Table 3.
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Number of
integrators

(n)

&~ NN

8

0.127

0.0759
0.0658
0.0506

TABLE 3:

0.0760
0.0478
0.0422
0.0338

0.368
0.380

0.385"

0.400

0.422
0.437
0.443
0.461

0.221

- 0.316
0.346

0.400

Noise Counting Rate Parameters
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For the amplifier discussed in Section 3.2.1 the rms
noise level, including detector leakage current, was 7.51 KeV,.
The noise counting rate then becomes

~
"

-N2
5.43 x 105 exp [ - } (3.3-38)

discrimination level in KeV, and the rate is in

counts per second. Several values of R are given in Table 4.

where D
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Discrimination Noise Counting
Level Rate
(KeV) (Counts per second)
10 1.76 x 10°
20 1.57 x 10%
40 3.92 x 1071
80 2.83 x 1077

(Amplifier parameters given in Table 2 for high detector
leakage. Pulse shaping was double-integration, double-
differentiation.)

TABLE 4: Typical Noise Counting Rates
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3.3.1 Photomultiplier Tube System

A common form of x-ray detector is shown in
Figure 3.3.1-1. The lower-energy limit of the discriminator
threshold (D) is often determined by the noise counting rate,
which mostly results from the photomultiplier dark current.

Dark-current noise is caused by statistical
variations of thermally generated currents within the photo-
multiplier. Most of this current results from single-eiectron
events generated by thermionic emission at the photocathode.
For this case the dark-current noise at the amplifier input

becomes from the discussion of shot noise in section 3.1.2.

. = . 2
1nd 29146 €3.3.1-1)
where id = dark current referred to the photocathode
G = photomultiplier tube current gain

In actual practice this dark-current noise is increased over
the above because of events generated by thermionic emission

from the dynodes. A more correct expression then is (13)

- - 2 ‘ B
1nd 2qi46° V1 + 77 (3.3.1-2)

1]

where k

secondary emission ratio per stage,
usually of the arder of four.
statistical factor of the_ordef of 1.5.

=
it

(13)Technical Manual PT-60, Radio Corporation of America
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Figure 3.3.1-1: X-Ray Detector System
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This current noise adds to the amplifier noise

in a similar manner that detector leakage current noise adds

to the total noise of a solid-state detector amplifier system.
However, because of the large value of current noise and small.
input capacity compared to solid-state detector systems, the
optimum Shaping time constant often becomes smaller than the
0.25 us time constant of the Nal scintillation decay. Thus,
the optimum time constant case developed in section 3.2 cannot
be used, and the noise for equal time constants must be deter-

mined directly from equation 3.2-17. Evaluating the integrals
using equations 3.2-21, 22, and 23, one obtains for the equi-
valent squared-input noise energy

1
EZ = —— { IZ «B(m-1/2, n+1/2)
N 41Q2hy2 | N ’

CVET T (epre) e e
+ ‘ -

(m+n-1)!
‘l
i

eyl (cf+cs)2 B(m+1/2, n-1/2)

+ N > -
T J (3.3.1-3)
where

B(m-l/Z, n+1/2) - “[1.3;5...(2m_1)}[1.3'5...(En-1]

(m+n-1)! (m-1/2) 2™
. 7
B(m+1/2, n-1/2) = "[1.3'5‘..(2m-1)][1'3'5"°(3n-1ﬁ

(m+n-1)! (n-1/2) 20

Thus,
-100-
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T [1-3---(2m—1ﬂ[1-3---(2n~ﬂ vz,
Q2hy? (m+n-1) 1 2" 2m-1

tri

-7 2
en (Cf+Cs)

t(2n-1)

Y\eg? % (C+Cp) (m-1)! (n-1)t 2™*071 1
TTF1.3...(2m.1)][1-3---(2n-1)] J

(3.3.1-4)

If an amplifier of the type described in section

3.2.1 is used, then typically

P (3.3.1-5)
ex? = 1.68 x 1077 v/ VHz

I,.7 = 6.92x 107 1% A/ VHz
*+Ce = 20 pF

TE;? = amplifier contribution to TET

The photomultiplier dark current depends strongly on the tube
For example, the RCA 4461 has a typical dark current
referred to the anode of 5 x 107° A at a gain of 1.7 x 103,
yielding
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9

5 x 10 14

ld = m = 2.94 x 10 A
) (3.3.1-6)
and from equation 3.3.1-2
Tz 22,

The EMI 9524BR has a reduced dark current of typically

16

iy = 7.0x 107104 (3.3.1-8)
with
— i
iyg = 9.7 x 10 24 p2/u, (3.3.1-9)

The total current noise given by

iy = iy, * oing (3.3.1-10)

becomes indistinguishable from the dark-current noise in
both cases. '

If the time constant could be optimized for
noise, then its value would be of the order of 10 ns. There-
fore, as small a value as possible is chosen for = consisfent
with the 0.25 us Nal decay time constant. If double integra-
tion with double differentiation is used, then t can be 1 us
with about a 5% dependence of the‘gaih on the Nal decay time
constant. For this case the voltage noise becomes completely
negligible, and
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tqidG2(l+k?1)£1°3---(2m-lﬂ [1-3-j-(2n-lﬂ

"n

Q?hy(m+n-1)1 2™ (2m-1)

(3.3.1-11)

The charge per unit incident energy (Q)‘is
related to the photomultiplier tube parameters by

Ey (3.3.1-12)

where E; is the energy per photoelectron and is given by

“hw

Eop = T,C,Cg (3.3.1-13)

hw = photon energy at the peak of the combined
spectral response of the detector and photo-
multiplier tube. For Nal and S;; response,
How is typically 3.1 eV, '

CP = photocathode efficiency = average number of
photoelectrons per collected photon. For
the RCA 4461, Cp is typically 0.14 and for
the EMI 9524BR typically 0.16.

CL = 1light collection efficiency = probability that

a photon produced in the crystal reaches the

photocathode. Typically CL is 0.20.

CS = scintillation efficiency = fraction of the
incident energy converted to useful photons.

For Nal, CS is 0.08.
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For the above typical values and for the RCA 4461 tube, then

Ep = 1.38 KeV : (3.3.1-14)

and for the EMI 9524BR

Eq = 1.21 KeV © (3.3.1-15)

The total equivalent input noise energy then
becomes

|
TldEo\1+E?T){1-3---(2m-1)}[1-35-.(2n—1ﬂ
qhy? (m#n-1) 1 2™ (2m-1) -

: 2 ~
EN =

(3.3.1-16)

and the noise counting rate becoﬁes'using equations 3.3-14
and 3.3-20

1~ f[2m-1 [ -p2
R = 2m1 Zn-1 °©XP —
. LZ EN (3.3.1-17)
For double differentiation with double
integration
. 2( B
5 i} TldEo 1+’E——1—
N 32 qhy? (3.3.1-18)
and
-2
R o= 0159 [ -p2 ] |
T A
L 2 BN (3.3.1-19)

Several typical values of these quantities are given in
Table 5.
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These estimates should be treated with some
care, particularly when Very low rates result. First,
the normal distribution used in equation 3.3-6 is only
approximately correct and fails to be accurate for
large values of D/og. Second, noise from other sources
such as electrical pick-up, cosmic rays, or residual |
radioactivity in the phototube, crystal or mounting can
certainly dominate rates of the order of 10'5 countgiper
second. Third, the very strong dependence of R on Ey
implies that only small errors in estimating the equi-
valent input noise energy can produce order-of-magnitude

changes in the noise counting rate.
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Parameter

RCA 4461

EMI 9524BR

iy (Typical)

T

Eo
2
Ey?  (RMS)
at D = 5.0 KeV
at D = 7.07 KeV
at D = 10.0 KeV

2.94 x 1071 A

1 us
1.38 KeV
0.954 KeV?2

1
3.26 x 10 Ccts/s
6.69 x 10°° cts/s

16

2.81 x 10 cts/s

7.0 x 10746 A

1 us
1.21 KeV

2

1.74 x 10 “ KeV?

-16

< 10 cfs/s

< 10-16

-16

cts/s

< 10 77 cts/s

TABLE 5: Typical Noise Counting Rates
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ATC SPECIFICATION

(FOR COMPONENT ENGINEERING USE ONLY)

MAGNETIC ELEMENT
DESIGN AND FABRICATION

INSTRUCTION

ELEMENT DESCRIPTION

INDUCTOR,

PULSE SHAPING ,

2.0 MH

VENDOR NAME

VENDOR PART NO.

ATCSKETCH NO.

A-101703

PHA /U.C.



ATC SPECIFICATION

(FOR COMPONENT ENGINEERING USE ONLY)

ELECTRICAL CHARACTERISTICS

INDUCTOR
inoucTance 2.0 MH 4 0./ v _VRMS : ADC_7000 _ _cps
RESISTANCE /.8 PR~ S :
INDUCTANCE LINEARITY____ :  SIGNAL LEVEL RANGE T0
| CURRENT RANGE T0 8 v ers.

TEMPERATURE RANGE =55 10185 :,2' |
MAXIMUM LEVEL oV CcPs, _ADC
SELF RESONANT FREQUENCY.> 2:.0MH=4 0./ v
STRAY (EXTERNAL) MAGNETIC FIELD:

DC. GAUSS MAX @ INCHES WITH ADC APPLIED.

‘AC. L GAUSS MAX 8 +— INCHES WITH _ VRMS CPS APPLIED.

VOLTAGE COIL TO CORE

TO GROUND

‘ VENDOR NAME

VENDOR PART &

ATCsKETCH @

A

-/0/703

»
.
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TOROID TYPE
MECHANICAL CONFIGURATION

WINDING INFORMATION

360°

NNy
A\S

/

180°

SCHEMATIC

.

MINIMUM IDENTIFICATION:
1. —SEHEMATHE-DESIENATION-
2. ATC+ /01703
3. ~VENDORH#

4. SERPALH—

ATC sPLCIFICATIUN

(FOR COMPONENT ENGINEERING USE ONLY)

OUTLINE

- -

LEAD BREAKOUT

STUD:

TUBE:
HOLE:
;<—— ———b.i
VENDOR NAME
VENDOR F;ART »
ATCSKETCH &
A-/01703
PAGE 3



